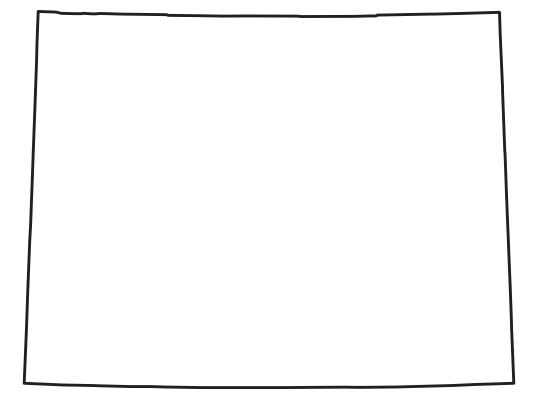


Water Resources Data Wyoming Water Year 2003

Volume 1. Surface Water

Water-Data Report WY-03-1

CALENDAR FOR WATER YEAR 2003


2002

		OC	тові	ER					NO	VEMI	BER					DE	СЕМ	BER		
S	M	T	W	T	F	S	S	М	T	W	T	F	S	S	M	Т	W	Т	F	S
		1	2	3	4	5						1	2	1	2	3	4	5	7	7
6	7	8	9	10	11	12	3	4	5	6	7	8	9	8	9	10	11	12	13	14
13	14	15	16	17	18	19	10	11	12	13	14	15	16	15	16	17	18	19	20	21
20	21	22	23	24	25	26	17	18	19	20	21	22	23	22	23	24	25	26	27	28
27	28	29	30	31			24	25	26	27	28	29	30	29	30	31				
										2003	3									
		JA	NUA	RY					FEE	BRUA	RY					N	IARC	Н		
S	M	T	W	T	F	S	S	М	T	W	T	F	S	S	М	T	W	T	F	S
			1	2	3	4							1							1
5	6	7	8	9	10	11	2	3	4	5	6	7	8	2	3	4	5	6	7	8
12	13	14	15	16	17	18	9	10	11	12	13	14	15	9	10	11	12	13	14	15
19	20	21	22	23	24	25	16	17	18	19	20	21	22	16	17	18	19	20	21	22
26	27	28	29	30	31		23	24	25	26	27	28		23	24	25	26	27	28	29
														30	31					
		ļ	APRIL	-					I	MAY						J	UNE			
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
		1	2	3	4	5					1	2	3	1	2	3	4	5	6	7
6	7	8	9	10	11	12	4	5	6	7	8	9	10	8	9	10	11	12	13	14
13	14	15	16	17	18	19	11	12	13	14	15	16	17	15	16	17	18	19	20	21
20	21	22	23	24	25	26	18	19	20	21	22	23	24	22	23	24	25	26	27	28
27	28	29	30				25	26	27	28	29	30	31	29	30					
											_					050				
			JULY							JGUS							ГЕМВ			
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	Τ	F	S
_		1	2	3	4	5						1	2		1	2	3	4	5	6
6	7	8	9	10	11	12	3	4	5	6	7	8	9	7	8	9	10	11	12	13
13	14	15	16	17	18	19	10	11	12	13	14	15	16	14	15	16	17	18	19	20
20	21	22	23	24	25	26	17	18	19	20	21	22	23	21	22	23	24	25	26	27
27	28	29	30	31			24	25	26	27	28	29	30	28	29	30				
							31													

Water Resources Data Wyoming Water Year 2003

Volume 1. Surface Water

By R.B. Swanson, K.A. Miller, R.E. Woodruff, G.A. Laidlaw, K.R. Watson, and M.L. Clark Water-Data Report WY-03-1

UNITED STATES DEPARTMENT OF THE INTERIOR

GALE A. NORTON, Secretary

GEOLOGICAL SURVEY

Charles G. Groat, Director

For information on the water program in Wyoming, write to:
District Chief, Water Resources Division
U.S. Geological Survey
2617 East Lincolnway, Suite B
Cheyenne, Wyoming 82001-5662

PREFACE

This annual hydrologic data report of Wyoming is one of a series of annual reports that documents hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and the quality of water provide the hydrologic information needed by Federal, State, and local agencies, and the private sector for administrating, developing, and managing our Nation's land and water resources. These records are contained in 2 volumes:

Volume 1. Surface-Water Data

Volume 2. Ground-Water Data

These reports are the culmination of a concerted effort by personnel of the U.S. Geological Survey of the Wyoming District who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. The authors had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to U.S. Geological Survey policies and guidelines.

Most of the data were collected, computed, and processed from the Casper Field Headquarters, R.E. Woodruff, Chief and from the Riverton Field Headquarters, G.A. Laidlaw, Chief. The following personnel are recognized for their significant contributions to this report:

B.M. Adams	N. Friday	K.A. Miller	P.A. Spatz
E.J. Blajszczak	L. Littau	T.A. Pointon	J.A. Swanson
D.C. Brost	T.J. Leman	W.J. Sadler	K.R. Watson
			J.D. Wheeler

Some surface water discharge records contained in this report were collected and computed by personnel from the Wyoming State Engineer's Office and reviewed and published by the U.S. Geological Survey. The following Wyoming State Engineer's Office personnel are recognized for their significant contributions to this report:

E. Boe	W. Knapp	T. Nelson	M.L. Smalley
D. Deutz	H. Jensen	D.R. Oliver	L. Smith
D. Englert	C. LoGuidice	A. Prado	D.L. Sprangers

L. Littau and K. R. Watson typed and assembled the report; S.C. Roberts provided the illustrations.

This report was prepared under the general supervision of Myron H. Brooks, District Chief, Wyoming, and in cooperation with the State of Wyoming and with other agencies.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)	AGENCY USE ONLY (Leave blank) 2. REPORT DATE April 2004 3. REPORT TYPE AND I Annual, October 2							
4. TITLE AND SUBTITLE	-	<u> </u>	5. FU	NDING NUMBERS				
Water Resources Data for Wy Volume 1. Surface-water data								
6. AUTHOR(S) R.B. Swanson, K.A. Miller, M.L. Clark	R.E. Woodruff, G.A. Laid	aw, K.R. Watson, a	nd					
7. PERFORMING ORGANIZATION NAME	(S) AND ADDRESS(ES)			RFORMING ORGANIZATION PORT NUMBER				
U.S. Geological Survey, Water 2617 E. Lincolnway, Suite B Cheyenne, Wyoming 82001-			US	GS-WDR-WY-03-1				
9. SPONSORING / MONITORING AGENC	Y NAME(S) AND ADDRESS(ES)			PONSORING / MONITORING GENCY REPORT NUMBER				
U.S. Geological Survey, Water 2617 E. Lincolnway, Suite B Cheyenne, Wyoming 82001-			US	GS-WDR-WY-03-1				
11. SUPPLEMENTARY NOTES Prepared in cooperation with	the State of Wyoming and	with other agencies.						
12a. DISTRIBUTION / AVAILABILITY STA	TEMENT		12b. I	DISTRIBUTION CODE				
This report may be purchased National Technical Information Springfield, VA								
Water resources data for the 2003 water year for Wyoming consists of records of stage, discharge and water quality of streams; stage and contents of lakes and reservoirs, and water levels and water quality of ground water. Volume 1 of this report contains discharge records for 160 gaging stations; water quality for 42 gaging stations and 28 ungaged stations, and stage and contents for one reservoir. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data together with the data in Volume 2 represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Wyoming.								
14. SUBJECT TERMS *Wyoming, *Hydrologic data	a *Surface water *Ground	water *Water quality	v Chem	15. NUMBER OF PAGES 541				
ical analyses, Gaging station Sampling sites				16. PRICE CODE				
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFI OF ABSTRACT Unclassified	CATION	20. LIMITATION OF ABSTRACT				

CONTENTS

Preface	iii
List of gaging stations, in downstream order, for which records are published	vii
Introduction	1
Cooperation	3
Summary of hydrologic conditions	4
Streamflow.	6
Floods	6
Chemical quality of stream water	9
Downstream order and station number	11
Numbering system for wells and miscellaneous sites	11
Special networks and programs	12
Hydrologic Benchmark Network	12
National Stream-Quality Accounting Network	12
The National Atmospheric Deposition Program/National Trends Network	12
The USGS National Water-Quality Assessment Program	12 13
Explanation of stage- and water-discharge records	13
Data collection and computation	13
Data presentation	14
Station manuscript	15
Peak Discharge greater than base discharge	16
Data table of daily mean values	16
Statistics of monthly mean data	16
Summary statistics	16
Identifying estimated daily discharge	18
Accuracy of field data and computed results	19
Other data records available	19
Explanation of precipitation records	19
Data collection and computation	19
Data presentation	20
Explanation of water-quality records	20 20
Water Analysis	20
Surface-water-quality records	21
Classification of records	21
Accuracy of records	21
Arrangement of records	22
On-site measurements and sample collection.	22
Water temperature.	22
Sediment.	23
Laboratory measurements	23
Data presentation	23
Remark codes	25
Water-quality control data	25
Blank samples	25
Reference samples	26
Replicate samples	26
Spike samples	27
Access to USGS water data	27
Selected References	27
Definition of terms	28
Techniques of water-resources investigations of the U.S. Geological Survey	43
Station records, surface water	48
Discharge at miscellaneous sites	501 501
Discharge measurements made at miscellaneous sites during water year 2003	502
Analysis of samples collected at special study and miscellaneous sites	504
Fremont County Weed and Pest District study	504
Grand Teton National Park, Eastern tributaries	505
Kendrick Irrigation study	510
National water-quality assessment program	511
Index	524
ILLUSTRATIONS	
Figure 1. Location of surface-water streamflow-gaging stations, water-quality stations, and reservoir	
station, 2003 water yearstation.	2
2. Water year 2003 and 1971-2000 average precipitation by climate division (Source: Western	_
Region Climate Center, 2004a)	4

	3.	Forty-eight month standarized precipitation index (SPI) by climate divisions for Wyoming,	
		October 1999 through September 2003 (modified from Western Climate Center, 2004b)	5
	4.	Annual average discharge for water year 2003, and median and maximum annual average disharge	
		for period of record for seven long-term index gaging stations in Wyoming	7
	5.	Average monthly and annual discharge for water year 2003, and median and maximum monthly and	
		average discharge for period of record for seven long-term index gaging stations in Wyoming	8
	6	. System for assigning identification numbers to miscellaneous sites using latitude and longitude.	11
	7.	Location of surface-water sampling sites in the Yellowstone River Basin NAWQA study unit,	
		Montana, North Dakota, and Wyoming	511
		TABLES	
		IABLEO	
Table	1.	Summary of snowpack conditions in eight major river divisions in Wyoming for water year 2003	
		(Source: Natural Resources Conservation Service, 2004)	5
	2.	Statistical summary of specific conductance measurements for discrete water samples from	
		selected stations for 2003 and 1993-2002 water years	1 (

[Letters after station names designate type of data - **Daily tables:** (D) discharge, (C) specific conductance, (S) sediment, (T) temperature, (V) elevation or contents, (O) dissolved oxygen, (P) pH - **Periodic tables:** (c) chemical, (m) microbiological, (s) sediment]

NOTE.--Data for NAWQA stations, partial-record stations, and miscellaneous sites are published in separate sections of the data report.

MISSOURI RIVER BASIN

M	ISSOURI RIVER BASIN		
	MADISON RIVER BASIN		
	FIREHOLE RIVER NEAR WEST YELLOWSTONE, MT (DT)		48
	GIBBON RIVER AT MADISON JUNCTION, YELLOWSTONE NATIONAL PARK (DT)		52
	MADISON RIVER NEAR WEST YELLOWSTONE, MT (D)	06037500	56
	GALLATIN RIVER BASIN		
	GALLATIN RIVER NEAR GALLATIN GATEWAY, MT (D)	06043500	58
	YELLOWSTONE RIVER BASIN		
	YELLOWSTONE RIVER AT YELLOWSTONE LAKE OUTLET, YELLOWSTONE NATIONAL PARK (D)		60
	SODA BUTTE CREEK AT PARK BOUNDARY, AT SILVER GATE, MT (DT)		62
	SODA BUTTE CREEK NEAR LAMAR RANGER STATION, YELLOWSTONE NATIONAL PARK (D)		66
	LAMAR RIVER NEAR TOWER FALLS RANGER STATION, YELLOWSTONE NATIONAL PARK (D)		68
	BOILING RIVER AT MAMMOTH, YELLOWSTONE NATIONAL PARK (DT)		70
	GARDNER RIVER NEAR MAMMOTH, YELLOWSTONE NATIONAL PARK (D)		74
	YELLOWSTONE RIVER AT CORWIN SPRINGS, MT (D)		76
	CLARKS FORK YELLOWSTONE RIVER AT MONTANA-WYOMING STATE LINE, NEAR COOKE CITY, MT (c)		78
	CLARKS FORK YELLOWSTONE RIVER NEAR BELFRY, MT (D)		79
	WIND RIVER NEAR DUBOIS, WY (D)		81
	WIND RIVER ABOVE RED CREEK, NEAR DUBOIS, WY (D)		83
	DINWOODY CREEK ABOVE LAKES, NEAR BURRIS, WY (D)		85
	UPPER WIND RIVER A CANAL AT HEADWORKS, NEAR BURRIS, WY (D)		87
	DRY CREEK NEAR BURRIS, WY (D)		89
	DRY CREEK CANAL AT HEADGATE, NEAR BURRIS, WY (D)		91
	WILLOW CREEK NEAR CROWHEART, WY (D)		93
	BULL LAKE CREEK ABOVE BULL LAKE, WY (D)		95
	BULL LAKE CREEK NEAR LENORE, WY (D)		97
	WIND RIVER NEAR CROWHEART, WY (D)		99
	WYOMING CANAL NEAR LENORE, WY (D)		
	JOHNSTOWN DITCH AT HEADWORKS, NEAR KINNEAR, WY (D)		
	WIND RIVER NEAR KINNEAR, WY (D)LEFTHAND DITCH AT HEADWORKS, NEAR RIVERTON, WY (D)		
	WIND RIVER AT RIVERTON, WY (D)		
		00228000	109
	LITTLE WIND RIVER: SOUTH FORK LITTLE WIND RIVER ABOVE WASHAKIE RESERVOIR, NEAR FORT WASHAKIE, WY (D)	06229250	111
	SOUTH FORK LITTLE WIND RIVER ABOVE WASHARIE RESERVOIR, NEAR FORT WASHARIE, W1 (D)		
	RAY CANAL AT HEADWORKS, NEAR FORT WASHAKIE, WY (D)		
	NORTH FORK LITTLE WIND RIVER NEAR FORT WASHAKIE, WY (D)		
	TROUT CREEK NEAR FORT WASHAKIE, WY (D)		
	POPO AGIE RIVER AT HUDSON SIDING, NEAR LANDER, WY (cm)		
	LITTLE POPO AGIE RIVER NEAR LANDER, WY (D)		
	LITTLE WIND RIVER NEAR RIVERTON, WY (Dm)		
	WIND RIVER ABOVE BOYSEN RESERVOIR, NEAR SHOSHONI, WY (D)		
	FIVEMILE CREEK ABOVE WYOMING CANAL, NEAR PAVILLION, WY (D)		
	FIVEMILE CREEK NEAR SHOSHONI, WY (D)		
	WIND RIVER BELOW BOYSEN RESERVOIR, WY (D)		
	BIGHORN RIVER BASIN:		100
	SOUTH FORK OWL CREEK BELOW ANCHOR RESERVOIR, WY (D)	06260400	135
	BIGHORN RIVER AT LUCERNE, WY (cm)		
	COTTONWOOD CREEK AT HIGH ISLAND RANCH, NEAR HAMILTON DOME, WY (D)		
	BIGHORN RIVER AT BASIN, WY (Dcms)		
	GREYBULL RIVER AT MEETEETSE, WY (Dms)		
	SHELL CREEK ABOVE SHELL RESERVOIR, WY (D)		
	SHELL CREEK NEAR SHELL, WY (D)	06278500	148
	BIGHORN RIVER AT KANE, WY (Dcms)		
	CROW CREEK AT MOUTH, AT PAHASKA, WY (DCPOTcs)		
	NORTH FORK SHOSHONE RIVER AT WAPITI, WY (D)		
	SOUTH FORK SHOSHONE RIVER NEAR VALLEY, WY (D)		
	SOUTH FORK SHOSHONE RIVER ABOVE BUFFALO BILL RESERVOIR, WY (D)	06281000	171
	SHOSHONE RIVER ABOVE DEMARIS SPRINGS, NEAR CODY, WY (c)	06281700	173

Station

Number Page

MISSOLIDI DIVED DASIN Continued		
MISSOURI RIVER BASINContinued		
YELLOWSTONE RIVERContinued		
BIGHORN RIVERContinued	0.6202000	174
SHOSHONE RIVER BELOW BUFFALO BILL RESERVOIR, WY (D)		
BITTER CREEK NEAR GARLAND, WY (cm)		
SHOSHONE RIVER NEAR LOVELL, WY (Dcm)		
BIGHORN RIVER NEAR ST. XAVIER, MT (D)		
LITTLE BIGHORN RIVER AT STATE LINE, NEAR WYOLA, MT (D)	06289000	182
PASS CREEK:		
WEST PASS CREEK NEAR PARKMAN, WY (D)	06289600	184
EAST PASS CREEK NEAR DAYTON, WY (D)	06289820	186
PASS CREEK NEAR WYOLA, MT (D)	06290000	188
TONGUE RIVER:		
HIGHLINE DITCH NEAR DAYTON, WY (D)	06297500	190
TONGUE RIVER NEAR DAYTON, WY (D)	06298000	192
WOLF CREEK AT WOLF, WY (D)	06299500	194
EAST FORK BIG GOOSE CREEK:		
WEST FORK BIG GOOSE CREEK:		
CONEY CREEK ABOVE TWIN LAKES, NEAR BIG HORN, WY (D)	06301480	196
CONEY CREEK BELOW TWIN LAKES, NEAR BIG HORN, WY (D)		
BIG GOOSE CREEK:	00301493	190
LITTLE GOOSE CREEK IN CANYON, NEAR BIG HORN, WY (D)	06202500	200
LITTLE GOOSE CREEK AT SHERIDAN, WY (cm)		
GOOSE CREEK BELOW SHERIDAN, WY (cm)		
GOOSE CREEK NEAR ACME, WY (D)		
PRAIRIE DOG CREEK NEAR ACME, WY (Dc)		
TONGUE RIVER AT STATE LINE, NEAR DECKER, MT (DCcs)		
MIDDLE FORK POWDER RIVER NEAR BARNUM, WY (D)		
NORTH FORK POWDER RIVER NEAR HAZELTON, WY (D)	06311000	221
NORTH FORK POWDER RIVER BELOW PASS CREEK, NEAR MAYOWORTH, WY (D)	06311400	223
SALT CREEK NEAR SUSSEX, WY (c)	06313400	225
POWDER RIVER AT SUSSEX, WY (DCTc)	06313500	227
POWDER RIVER ABOVE BURGER DRAW, NEAR BUFFALO (Dc)	06313590	234
POWDER RIVER BELOW BURGER DRAW, NEAR BUFFALO, WY (c)	06313605	237
DEAD HORSE CREEK NEAR BUFFALO, WY (c)	06313700	239
CRAZY WOMAN CREEK AT UPPER STATION, NEAR ARVADA, WY (DCTcs)		
POWDER RIVER AT ARVADA, WY (Dc)		
WILD HORSE CREEK NEAR ARVADA, WY (Dc)		
CLEAR CREEK:		200
ROCK CREEK NEAR BUFFALO, WY (D)	06320000	250
CLEAR CREEK ABOVE KUMOR DRAW, NEAR BUFFALO, WY (cm)		
SOUTH PINEY CREEK AT WILLOW PARK, WY (D)		
PINEY CREEK AT KEARNY, WY (D)		
CLEAR CREEK NEAR ARVADA, WY (DCTc)		
POWDER RIVER AT MOORHEAD, MT (DCTc)		
LITTLE POWDER RIVER ABOVE DRY CREEK, NEAR WESTON, WY (Dcs)	06324970	283
CHEYENNE RIVER BASIN		
ANTELOPE CREEK (HEAD OF CHEYENNE RIVER):		
PORCUPINE CREEK NEAR TECKLA, WY (Dc)		
ANTELOPE CREEK NEAR TECKLA, WY (c)	06364700	289
BLACK THUNDER CREEK NEAR HAMPSHIRE, WY (c)	06376300	291
CHEYENNE RIVER AT RIVERVIEW, WY (c)	06386400	293
BEAVER CREEK AT MALLO CAMP, NEAR FOUR CORNERS, WY (D)	06392900	295
STOCKADE BEAVER CREEK NEAR NEWCASTLE, WY (D)		
CHEYENNE RIVER AT EDGEMONT, SD (D)		
BELLE FOURCHE RIVER BELOW RATTLENSAKE CREEK, NEAR PINEY, WY (Dc)		
CABALLO CREEK AT MOUTH, NEAR PINEY, WY (c)		
DONKEY CREEK NEAR GILLETTE, WY (D)		
STONEPILE CREEK AT MOUTH NEAR GILLETTE, WY (D)		
	06426400	311
DONKEY CREEK NEAR MOORCROFT, WY (c)		
BELLE FOURCHE RIVER BELOW MOORCROFT, WY (Dcm)		
	06428050	317

Station Number Page

MISSOURI RIVER BASINContinued		
YELLOWSTONE RIVERContinued		
CHEYENNE RIVERContinued		
BELLE FOURCHE RIVERContinued		
REDWATER CREEK:		
COLD SPRINGS CREEK AT BUCKHORN, WY (D)	06429500	321
SAND CREEK NEAR RANCH A, NEAR BEULAH, WY (D)		
MURRAY DITCH ABOVE HEADGATE AT WYOMING-SOUTH DAKOTA STATE LINE (D)	06429997	325
REDWATER CREEK AT WYOMING-SOUTH DAKOTA STATE LINE (D)	06430500	327
PLATTE RIVER BASIN		
NORTH PLATTE RIVER NEAR NORTHGATE, CO (D)		
NORTH BRUSH CREEK NEAR SARATOGA, WY (D)		
SOUTH BRUSH CREEK NEAR SARATOGA, WY (D)		
ENCAMPMENT RIVER ABOVE HOG PARK CREEK, NEAR ENCAMPMENT, WY (D)		
ENCAMPMENT RIVER AT MOUTH, NEAR ENCAMPMENT, WY (D)		
JACK CREEK ABOVE COYOTE DRAW, NEAR SARATOGA, WY (D)		
PASS CREEK NEAR ELK MOUNTAIN, WY (D)		
NORTH PLATTE RIVER ABOVE SEMINOE RESERVOIR, NEAR SINCLAIR, WY (D)	06630000	343
MEDICINE BOW RIVER:		
ROCK CREEK ABOVE KING CANYON CANAL, NEAR ARLINGTON, WY (D)		
LITTLE MEDICINE BOW RIVER AT BOLES SPRING, NEAR MEDICINE BOW, WY (D)		
MEDICINE BOW RIVER ABOVE SEMINOE RESERVOIR, NEAR HANNA, WY (D)		
SWEETWATER RIVER NEAR ALCOVA, WY (D)		
NORTH PLATTE RIVER BELOW CASPER, WY (c)		
BOX ELDER CREEK AT BOXELDER, WY (D)		
NORTH PLATTE RIVER AT ORIN, WY (D)		
NORTH PLATTE RIVER BELOW GLENDO RESERVOIR, WY (D)		
NORTH PLATTE RIVER BELOW WHALEN DIVERSION DAM, WY (D)		
LARAMIE RIVER AND PIONEER CANAL NEAR WOODS LANDING, WY (D)		
SAND CREEK AT COLORADO-WYOMING STATE LINE (D)		
LITTLE LARAMIE RIVER NEAR FILMORE, WY (D)		
LARAMIE RIVER NEAR BOSLER, WY (D)		
SYBILLE CREEK ABOVE MULE CREEK, NEAR WHEATLAND, WY (D)		
WHEATLAND CREEK BELOW WHEATLAND, WY (cm)		
LARAMIE RIVER NEAR FORT LARAMIE, WY (D)		
NORTH PLATTE RIVER AT WYOMING-NEBRASKA STATE LINE (D)		
SOUTH PLATTE RIVER:	00074300	311
CROW CREEK AT 19TH STREET, AT CHEYENNE, WY (D)	06755960	380
CROW CREEK AT 19111 STREET, AT CHETENNE, WT (b)		
LODGEPOLE CREEK AT BUSHNELL, NE (D)		
EODGLI GLE CKEEK III BOOTINEEE, IIE (D)	00702300	303
UPPER COLORADO RIVER BASIN		
GREEN RIVER BASIN		
	09188500	385
NEW FORK RIVER:		
PINE CREEK ABOVE FREMONT LAKE, WY (D)	09196500	387
PINE CREEK BELOW FREMONT LAKE, WY (D)		
NEW FORK RIVER NEAR BIG PINEY, WY (D)		
GREEN RIVER NEAR LA BARGE, WY (D)		
FONTENELLE CREEK NEAR HERSCHLER RANCH, NEAR FONTENELLE, WY (D)		
GREEN RIVER BELOW FONTENELLE RESERVOIR, WY (D)		
BIG SANDY RIVER NEAR FARSON, WY (D)	09213500	400
BIG SANDY RESERVOIR NEAR FARSON, WY (v)	09213700	402
BIG SANDY RIVER AT GASSON BRIDGE, NEAR EDEN, WY (D)	09216050	404
GREEN RIVER NEAR GREEN RIVER, WY (Dc)		
GREEN RIVER BELOW GREEN RIVER, WY (c)	09217010	409
BLACKS FORK NEAR ROBERTSON, WY (D)		
EAST FORK OF SMITHS FORK NEAR ROBERTSON, WY (D)	09220000	412
BLACKS FORK NEAR LYMAN, WY (cms)	09222000	414
HAMS FORK BELOW POLE CREEK, NEAR FRONTIER, WY (D)	09223000	415
HAMS FORK NEAR DIAMONDVILLE, WY (cm)		
BLACKS FORK NEAR LITTLE AMERICA, WY (Dc)	09224700	418

Station Number Page

UPPER COLORADO RIVER BASINContinued		
GREEN RIVER BASINContinued		
HENRYS FORK NEAR MANILA, UT (D)		
GREEN RIVER NEAR GREENDALE, UT (DT)	09234500	423
YAMPA RIVER:		
LITTLE SNAKE RIVER NEAR SLATER, CO (D)	09253000	427
BATTLE CREEK:		
WEST FORK BATTLE CREEK:		
HAGGARTY CREEK ABOVE BELVIDERE DITCH, NEAR ENCAMPMENT, WY (c)		
WEST FORK BATTLE CREEK AT BATTLE CREEK CAMPGROUND, NEAR SAVERY, WY (c)		
SLATER FORK NEAR SLATER, CO (D)		
LITTLE SNAKE RIVER BELOW BAGGS, WY (cs)	09259050	433
GREAT SALT LAKE BASIN		
BEAR RIVER BASIN		
BEAR RIVER NEAR UTAH-WYOMING STATE LINE (D)		
BEAR RIVER AT EVANSTON, WY (D)		
BEAR RIVER ABOVE RESERVOIR, NEAR WOODRUFF, UT (Dcs)		
BEAR RIVER BELOW RESERVOIR, NEAR WOODRUFF, UT (D)	10020300	441
TWIN CREEK AT SAGE, WY (cs)	10027000	443
BEAR RIVER BELOW PIXLEY DAM, NEAR COKEVILLE, WY (D)	10028500	444
SMITHS FORK NEAR BORDER, WY (D)	10032000	446
SMITHS FORK AT COKEVILLE, WY (cs)	10035000	448
BEAR RIVER BELOW SMITHS FORK, NEAR COKEVILLE, WY (Dcms)	10038000	449
BEAR RIVER AT BORDER, WY (D)	10039500	452
COLUMBIA RIVER BASIN		
SNAKE RIVER BASIN		
SNAKE RIVER ABOVE JACKSON LAKE, AT FLAGG RANCH, WY (Dcs)	13010065	454
SNAKE RIVER NEAR MORAN, WY (D)	13011000	459
PACIFIC CREEK AT MORAN, WY (D)	13011500	461
BUFFALO FORK ABOVE LAVA CREEK, NEAR MORAN, WY (D)	13011900	463
SNAKE RIVER AT MOOSE, WY (DCTOPcs)	13013650	465
GROS VENTRE BASIN		
GROS VENTRE RIVER AT ZENITH, WY (D)	13015000	476
FISH CREEK BASIN		
GRANITE CREEK ABOVE GRANITE CREEK SUPPLEMENTAL, NEAR MOOSE, WY (D)	13016305	478
FISH CREEK AT WILSON, WY (D)	13016450	480
FLAT CREEK BASIN		
CACHE CREEK NEAR JACKSON, WY (D)	13018300	482
FLAT CREEK BELOW CACHE CREEK, NEAR JACKSON, WY (D)	13018350	484
SNAKE RIVER BELOW FLAT CREEK, NEAR JACKSON, WY (Dcs)	13018750	486
SNAKE RIVER ABOVE RESERVOIR, NEAR ALPINE, WY (D)	13022500	492
GREYS RIVER BASIN		
GREYS RIVER ABOVE RESERVOIR, NEAR ALPINE, WY (D)	13023000	494
SALT RIVER BASIN		
SALT RIVER ABOVE RESERVOIR, NEAR ETNA, WY (Dcms)	13027500	496
HENRYS FORK BASIN		
FALLS RIVER:		
BOUNDARY CREEK NEAR BECHLER RANGER STATION, WY (D)	13046680	499

1

INTRODUCTION

The Water Resources Division of the U.S. Geological Survey (USGS), in cooperation with State, Tribal, county, municipal, and other Federal agencies, collects data each water year describing the water resources of Wyoming. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, the data are published annually in this report series entitled, "Water Resources Data - Wyoming".

Water resources data for water year 2003 for Wyoming in this volume consists of records of stage, discharge, and water quality of streams; and stage and contents of lakes and reservoirs. This report contains discharge records for 160 gaging stations; water quality at 42 gaging stations and 28 ungaged stations; and stage and contents for one reservoir. Locations of streamflow-gaging stations and water-quality stations are shown in figure 1. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements.

Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of USGS water-supply papers entitled "Surface Water Supply of the United States." Through September 30, 1960, these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. Records of chemical quality, water temperatures, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled "Quality of Surface Waters of the United States." Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled "Ground-Water Levels in the United States." Water-supply papers may be consulted in the libraries of the principal cities of the United States or may be purchased from USGS Information Services, Box 25286, Denver Federal Center, Denver, Colorado 80225.

For water years 1961 through 1970, streamflow data were released by the USGS in annual reports on a State-boundary basis. Water-quality records for water years 1964 through 1970 were similarly released either in separate reports or in conjunction with streamflow records.

Beginning with the 1971 water year, water data for streamflow, water quality, and ground water have been published in official USGS reports on a State-boundary basis. These official USGS reports carry an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report WY-03-1." These water-data reports are for sale, in paper copy or on microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Additional information, including current prices, for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page, by telephone at (307) 778-2931, or be email at state_rep_wy@usgs.gov. Hydrologic data for Wyoming is available on the World Wide Web at: http://wv.water.usgs.gov/

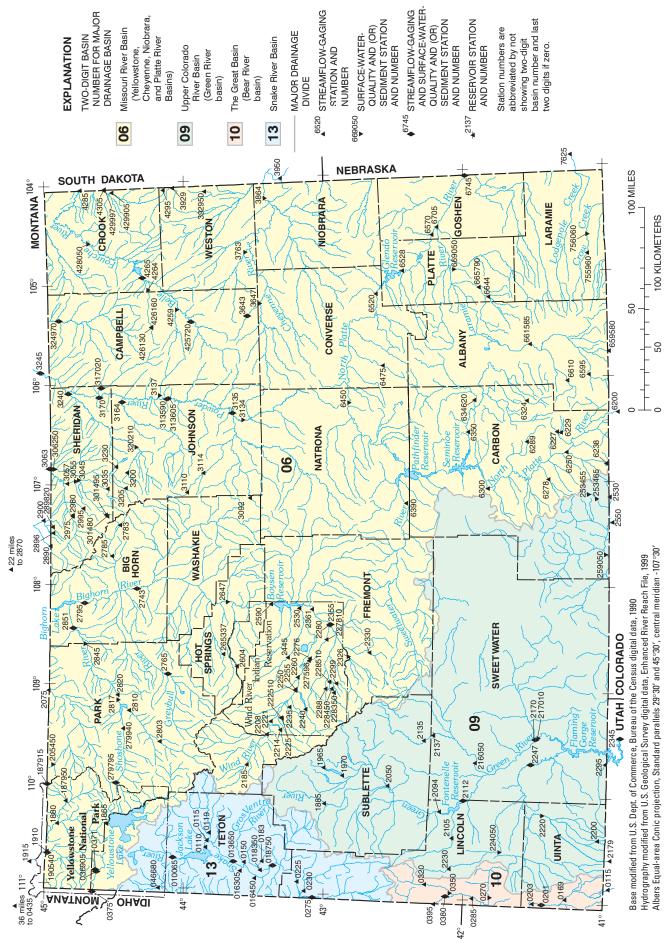


Figure 1. Location of surface-water streamflow-gaging stations, water-quality stations, and reservoir station, 2003 water year.

COOPERATION

The USGS and organizations of the State of Wyoming have had cooperative agreements for the systematic collection of streamflow records since 1895, for measurement of ground-water levels since 1940, and for collection of water-quality samples since 1946. Agencies and organizations that assisted in data collection through cooperative agreements with the USGS during water year 2003 were:

Federal Agencies

Bureau of Reclamation, U.S. Department of the Interior

Bureau of Land Management, U.S. Department of the Interior

U.S. Forest Service, U.S. Department of Agriculture

National Park Service, U.S. Department of the Interior

Corps of Engineers, U.S. Army

Tribal Governments

Tribal Water Engineer, Shoshone and Northern Arapaho Tribes, Joint Business Council, Vernon Hill and Burton Hutchinson, Sr., Co-chairmen

State Agencies

Wyoming State Engineer's Office, Patrick T. Tyrrell, State Engineer

Wyoming Department of Environmental Quality, John Corra, Director

Wyoming Water Development Commission, Lawrence Besson, Administrator

Local Agencies

Teton Conservation District, Randy Williams, Executive Director

Sheridan Area Water Supply Joint Powers Board, Bruce Yates, Administrator

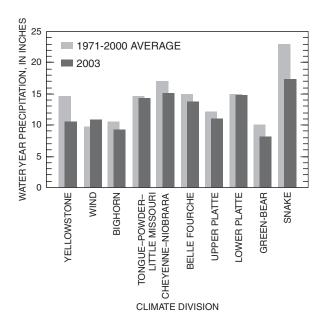
Sweetwater County Conservation District, Ginger Eaton, District Coordinator

Fremont County Weed and Pest Control District, Lars Baker, Supervisor

Municipalities

City of Cheyenne, Jack Spiker, Mayor

City of Gillette, Duane Evenson, Mayor

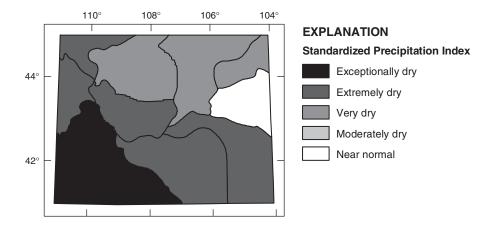

SUMMARY OF HYDROLOGIC CONDITIONS

Water year 2003 was the fourth consecutive year of below average precipitation for parts of Wyoming. Statewide precipitation for the water year was about 90 percent of average and snowpack accumulation through spring was about 82 percent of average. Below normal streamflows recorded at gaging stations across the State resulted from continuing drought. Water year 2003 average annual discharge at most stations was less than the median average annual discharge. Measurements of specific conductance at 10 long-term water-quality monitoring sites were generally within the range of measurements for the 10-year period 1993-2002.

Precipitation

Precipitation for water year 2003 was below average for parts of Wyoming for the fourth consecutive year. Precipitation data for the State are summarized by climate divisions as defined by the National Oceanic and Atmospheric Administration (NOAA). Divisional precipitation in water year 2003 ranged from about 112 percent of the 1971-2000 average for the Wind climate division to about 72 percent of the average for the Yellowstone climate division (fig. 2; Western Regional Climate Center, 2004a). Water year 2003 precipitation for all Wyoming climate divisions averaged about 90 percent of the 1971-2000 average. For the Yellowstone climate division, water year 2003 precipitation was the second lowest for the period of record (water years 1896-2003).

Snow accumulation for water year 2003 was below average for most of Wyoming. Most runoff in the State is derived from snowmelt. Snowpack conditions are summarized by major river basins by the Natural Resources Conservation Service


Figure 2. Water year 2003 and 1971-2000 average precipitation by climate division (Source: Western Regional Climate Center, 2004a).

(NRCS). As of May 1, 2003 prior to the normal snowmelt period, basin snowpack conditions for Wyoming ranged from about 109 percent of average for parts of the Lower Platte River basin to about 44 percent of average for parts of the Green and Bear River basins (table 1; Natural Resources Conservation Service, 2004). Snowpack conditions as of May 1, 2003 for all Wyoming major river basins were about 82 percent of average. The Belle Fourche and Cheyenne River basins are lower in elevation than the other basins and the snowpack generally is mostly melted by May 1; thus, snowpack conditions for the Belle Fourche and Cheyenne River basins are not listed in table 1.

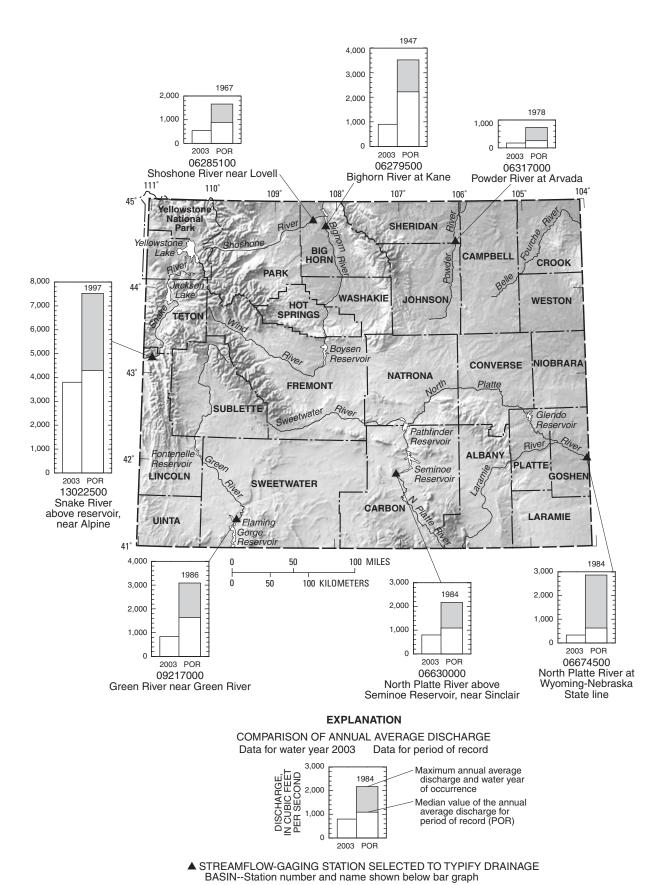
Table 1. Summary of snowpack conditions in eight major river basins in Wyoming for water year 2003 (Source: Natural Resources Conservation Service, 2004).

	Range of snowpack, in percent of average snow water equivalent as of May 1, 2003				
Major River Basin	Low	High			
Yellowstone River	80	94			
Wind River	61	76			
Bighorn River	69	102			
Powder and Tongue Rivers	64	94			
Upper Platte River	57	108			
Lower Platte River	69	109			
Green and Bear Rivers	44	93			
Snake River	58	102			

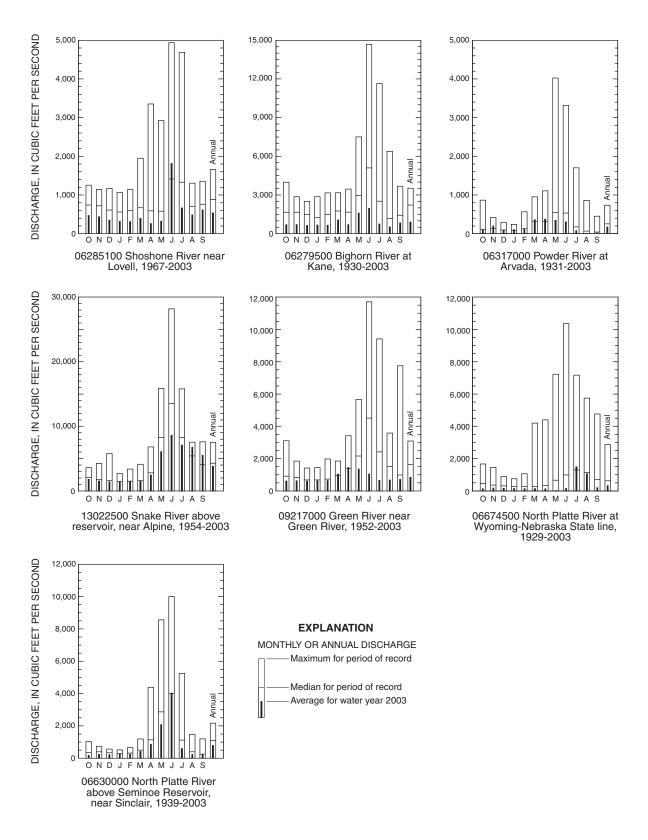
Drought conditions worsened in Wyoming during water year 2003 because of consecutive years of below normal precipitation. These cumulative effects are not quantified in annual precipitation summaries. The Standardized Precipitation Index (SPI) is a measure of the probability of recording a given amount of precipitation over a specified period (Western Regional Climate Center, 2004b). The SPI is centered such that an index value of zero equals the median precipitation. The index is increasingly negative for drought conditions in both magnitude and (or) duration. The SPI for water years 1999 through 2003 for six of the 10 NOAA climate divisions in Wyoming was classified as extremely dry or drier, illustrating the cumulative effect of below normal precipitation (fig. 3; Western Regional Climate Center, 2004b). For the Green climate division, the SPI for water years 1999 through 2003 was classified as exceptionally dry; the Green climate division was the driest climate division in the country for this 48-month period.

Figure 3. Forty-eight month Standardized Precipitation Index (SPI) by climate divisions for Wyoming, October 1999 through September 2003 (Modified from Western Regional Climate Center, 2004b).

Streamflow


Average annual discharge at seven long-term index gaging stations was less than the median average annual discharge for the period of record (fig. 4). Average annual discharge at the index stations ranged from about 41 percent of the median average annual discharge at 06279500 Bighorn River at Kane to about 89 percent of the median average annual discharge at 13022500 Snake River above reservoir near Alpine. Average annual discharge was the second lowest on record at 06279500 Bighorn River at Kane (74 years) and the lowest on record at 06674500 North Platte River at Wyoming-Nebraska State Line (74 years).

Average annual discharge at most gaging stations in and near Wyoming was less than the median average annual discharge for the period of record. Water year 2003 average annual discharge was less than the period of record median average annual discharge at about 92 percent (94 of 102) of all stations with at least 10 years of annual streamflow data. About 13 percent (13 of 102) of all stations with at least 10 years of annual streamflow data recorded the third lowest or lower average annual discharge in water year 2003. New record lows for average annual discharge were set at five of the 13 stations. The average record length for stations recording the third lowest or lower average annual discharge recorded in water year 2003 was about 38 years. Most (10 of the 13) of these stations were influenced by regulation from major reservoirs and (or) diversions for irrigation.


Most average monthly discharges at seven long-term index gaging stations were less than the median average monthly discharges for the period of record (fig. 5). Average monthly discharges during some months were the lowest on record at 06279500 Bighorn River near Kane (74 years), 06630000 North Platte River above Seminoe Reservoir, near Sinclair (64 years), and 06674500 North Platte River at Wyoming-Nebraska State Line (74 years). Streamflows at these three stations are significantly influenced by regulation from upstream reservoirs.

Floods

On or about September 8, 2003, a perennial lake at the head of Grasshopper Glacier in west-central Wyoming suddenly drained, resulting in large streamflows in the Dinwoody Creek basin. Grasshopper Glacier is located on the east flank of the Continental Divide in the Wind River Range. Reports indicate the lake was apparently dammed by Grasshopper Glacier until it drained to the north under the glacier and into Grasshopper Creek (Liz Oswald, U.S. Forest Service, written commun., 2003). Substantial quantities of suspended sediment were entrained and transported downstream to the Down's Fork and finally Dinwoody Creek. A maximum streamflow of about 1,260 cubic feet per second (ft³/sec) occurred on September 9, 2003 at USGS 06221400 Dinwoody Creek above lakes near Burris, resulting in the instantaneous peak streamflow for water year 2003. Annual peak streamflows at USGS 06221400 generally occur during middle- to late-June as a result of snowmelt runoff and average about 940 ft³/sec (record consists of 38 annual peak streamflows between 1918 and 2003).

Figure 4. Annual average discharge for water year 2003, and median and maximum annual average discharge for period of record for seven long-term index gaging stations in Wyoming.

Figure 5. Average monthly and annual discharge for water year 2003, and median and maximum monthly and annual discharge for period of record for seven long-term index gaging stations in Wyoming.

Chemical Quality of Stream Water

The U.S. Geological Survey operates a network of water-quality stations throughout Wyoming in cooperation with numerous Federal, State, and local agencies. The network changes from year to year as objectives are achieved or changed, or funding is changed. The sampling frequency varies from station to station; however, most stations are sampled at least four times per year. Some stations have only a few years of water-quality information, while other stations have been in operation for many years and provide a basis for the description of long-term conditions that represent a wide range of natural variability. Various water-quality measurements are made, either onsite or by laboratory analyses of samples, depending on the water-quality objectives of the investigation. Onsite stream measurements at stations generally include specific conductance, pH, water temperature, and dissolved oxygen. In addition, bacteria is sometimes analyzed in the field. Laboratory analyses in 2003 may include major ions, dissolved solids, nutrients, trace elements, organic compounds, or sediment.

The concentration of dissolved solids represents the total of all constituents dissolved in the water. Specific conductance typically varies directly with the dissolved-solids concentration; thus, specific conductance was chosen as an indicator of the concentration of dissolved solids and general water quality. Concentrations of dissolved solids generally are inversely related to discharge. A statistical summary of specific-conductance measurements for samples at 10 stations for selected streams in Wyoming describes the general water-quality variability of the stream water during 2003 (table 2). The specific conductance varies considerably in Wyoming owing to the diverse geology of the State. The maximum value measured on these streams (4,650 microsiemens per centimeter at 25 degrees Celsius) was from a sample collected at the Powder River at Arvada, Wyoming (station 06317000); the minimum value measured (123 microsiemens per centimeter at 25 degrees Celsius) was from a sample collected at the Snake River at Moose, Wyoming (station 13013650).

To compare the current and long-term water-quality conditions, specific-conductance measurements are summarized for water year 2003 and the 10-year period of water years 1993-2002. The range of specific-conductance measurements is described by the minimum and maximum values. In addition, the central tendency of data collected over the 10-year period is described by the median (50th percentile). All specific-conductance measurements in 2003 were within the range of measurements for the 10-year period of water years 1993-2002, except for two stations. The maximum specific-conductance measurement (4,470 microsiemens per centimeter at 25 degrees Celsius) at the Little Powder River above Dry Creek, near Weston, Wyoming (station 06324970) in water year 2003 was greater than the maximum for the 10-year period of water years 1993-2002. The minimum specific-condutance measurement (321 microsiemens per centimer at 25 degrees Celsius) at the Bighorn River at Kane, Wyoming (station 06279500) in water year 2003 was less than the minimum for the 10-year period of water years 1993-2002.

Table 2.--Statistical summary of specific-conductance measurements for discrete water samples from selected stations for 2003 and 1993-2002 water years.

[Specific conductance, in microsiemens per centimeter at 25 degrees Celsius]

	Specific Conductance							
	,	Water Year 200	3	Wa				
Stream name and station number	Number of samples	Maximum	Minimum	Number of samples	Maximum	Median	Minimum	
Little Wind River near Riverton, Wyo. 06235500	4	1,180	584	45	1,240	840	161	
Bighorn River at Kane, Wyo. 06279500	4	1,180	321	97	1,850	899	368	
Powder River at Arvada, Wyo. 06317000	25	4,650	1,330	54	5,170	2,140	744	
Little Powder River above Dry Creek near Weston, Wyo. 06324970	12	4,470	1,020	81	4,460	3,280	358	
Belle Fourche River below Moorcroft, Wyo. 06426500	12	3,200	300	54	4,130	2,430	299	
North Platte River at Wyoming-Nebraska State line 06674500	4	963	852	68	1,240	849	545	
Green River below Green River, Wyo. 09217010	6	625	455	60	988	572	277	
Black's Fork near Lyman, Wyo. 09222000	4	1,740	1,410	27	3,880	1,380	700	
Bear River above reservoir, near Woodruff, Utah 10020100	4	535	306	40	993	456	145	
Snake River at Moose, Wyo. 13013650	8	218	123	66	228	180	113	

DOWNSTREAM ORDER AND STATION NUMBER

Since October 1, 1950, hydrologic-station records in USGS reports have been listed in order of downstream direction along the main stream. All stations on a tributary entering upstream from a main-stream station are listed before that station. A station on a tributary entering between two main-stream stations is listed between those stations. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary on which a station is located with respect to the stream to which it is immediately tributary is indicated by an indention in that list of stations in the front of this report. Each indentation represents one rank. This downstream order and system of indentation indicates which stations are on tributaries between any two stations and the rank of the tributary on which each station is located.

As an added means of identification, each hydrologic station and partial-record station has been assigned a station number. These station numbers are in the same downstream order used in this report. In assigning a station number, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list composed of both types of stations. Gaps are consecutive. The complete 8-digit (or 10-digit) number for each station such as 09004100, which appears just to the left of the station name, includes a 2-digit part number "09" plus the 6-digit (or 8-digit) downstream order number "004100." In areas of high station density, an additional two digits may be added to the station identification number to yield a 10-digit number. The stations are numbered in downstream order as described above between stations of consecutive 8-digit numbers.

NUMBERING SYSTEM FOR WELLS AND MISCELLANEOUS SITES

The USGS well and miscellaneous site-numbering system is based on the grid system of latitude and longitude. The system provides the geographic location of the well or miscellaneous site and a unique number for each site. The number consists of 15 digits. The first 6 digits denote the degrees, minutes, and seconds of latitude, and the next 7 digits denote degrees, minutes, and seconds of longitude; the last 2 digits are a sequential number for wells within a 1-second grid. In the event that the latitude-longitude coordinates for a well and miscellaneous site are the same, a sequential number such as "01," "02," and so forth, would be assigned as one would for wells (see fig. 6). The 8-digit, downstream order station numbers are not assigned to wells and miscellaneous sites where only random water-quality samples or discharge measurements are taken.

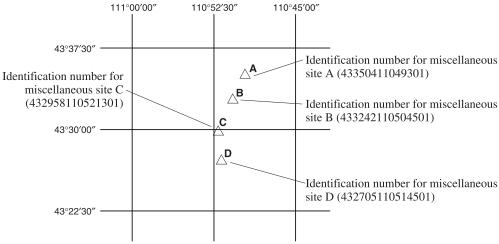


Figure 6. System for assigning identification numbers to miscellaneous sites using latitude and longitude.

SPECIAL NETWORKS AND PROGRAMS

Hydrologic Benchmark Network is a network of 61 sites in small drainage basins in 39 States that was established in 1963 to provide consistent streamflow data representative of undeveloped watersheds nationwide, and from which data could be analyzed on a continuing basis for use in comparison and contrast with conditions observed in basins more obviously affected by human activities. At selected sites, water-quality information is being gathered on major ions and nutrients, primarily to assess the effects of acid deposition on stream chemistry. Additional information on the Hydrologic Benchmark Program may be accessed from http://water.usgs.gov/hbn/.

National Stream-Quality Accounting Network (NASQAN) is a network of sites used to monitor the water quality of large rivers within the Nation's largest river basins. From 1995 through 1999, a network of approximately 40 stations was operated in the Mississippi, Columbia, Colorado, and Rio Grande River basins. For the period 2000 through 2004, sampling was reduced to a few index stations on the Colorado and Columbia Rivers so that a network of 5 stations could be implemented on the Yukon River. Samples are collected with sufficient frequency that the flux of a wide range of constituents can be estimated. The objective of NASQAN is to characterize the water quality of these large rivers by measuring concentration and mass transport of a wide range of dissolved and suspended constituents, including nutrients, major ions, dissolved and sediment-bound heavy metals, common pesticides, and inorganic and organic forms of carbon. This information will be used (1) to describe the long-term trends and changes in concentration and transport of these constituents; (2) to test findings of the National Water-Quality Assessment (NAWQA) Program; (3) to characterize processes unique to large-river systems such as storage and remobilization of sediments and associated contaminants; and (4) to refine existing estimates of offcontinent transport of water, sediment, and chemicals for assessing human effects on the world's oceans and for determining global cycles of carbon, nutrients, and other chemicals. Additional information about the NASQAN Program may be accessed from http://water.usgs.gov/nasgan/.

The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) is a network of monitoring sites that provide continuous measurement and assessment of the chemical constituents in precipitation throughout the United States. As the lead Federal agency, the USGS works together with over 100 organizations to provide a long-term, spatial and temporal record of atmospheric deposition generated from this network of 250 precipitation-chemistry monitoring sites. The USGS supports 74 of these 250 sites. This long-term, nationally consistent monitoring program, coupled with ecosystem research, provides critical information toward a national scorecard to evaluate the effectiveness of ongoing and future regulations intended to reduce atmospheric emissions and subsequent impacts to the Nation's land and water resources. Reports and other information on the NADP/NTN Program, as well as data from the individual sites, may be accessed from http://bas.usgs.gov/acidrain/.

The USGS National Water-Quality Assessment (NAWQA) Program is a long-term program with goals to describe the status and trends of water-quality conditions for a large, representative part of the Nation's ground- and surface-water resources; to provide an improved understanding of the primary natural and human factors affecting these observed conditions and trends; and to provide information that supports development and evaluation of management, regulatory, and monitoring decisions by other agencies.

Assessment activities are being conducted in 42 study units (major watersheds and aquifer systems) that represent a wide range of environmental settings nationwide and that account for a large percentage of the Nation's water use. A wide array of chemical constituents is measured in ground water, surface water, streambed sediments, and fish tissues. The coordinated application of comparative hydrologic studies at a

wide range of spatial and temporal scales will provide information for water-resources managers to use in making decisions and a foundation for aggregation and comparison of findings to address water-quality issues of regional and national interest.

Communication and coordination between USGS personnel and other local, State, and Federal interests are critical components of the NAWQA Program. Each study unit has a local liaison committee consisting of representatives from key Federal, State, and local water-resources agencies, Indian nations, and universities in the study unit. Liaison committees typically meet semiannually to discuss their information needs, monitoring plans and progress, desired information products, and opportunities to collaborate efforts among the agencies. Additional information about the NAWQA Program may be accessed from http://water.usgs.gov/nawqa/.

The USGS National Streamflow Information Program (NSIP) is a long-term program with goals to provide framework streamflow data across the Nation. Included in the program are creation of a permanent Federally funded streamflow network, research on the nature of streamflow, regional assessments of streamflow data and databases, and upgrades in the streamflow information delivery systems. Additional information about NSIP may be accessed from http://water.usgs.gov/nsip/.

EXPLANATION OF STAGE- AND WATER-DISCHARGE RECORDS

Data Collection and Computation

The base data collected at gaging stations (fig. 1) consist of records of stage and measurements of discharge of streams or canals, and stage, surface area, and volume of lakes or reservoirs. In addition, observations of factors affecting the stage-discharge relation or the stage-capacity relation, weather records, and other information are used to supplement base data in determining the daily flow or volume of water in storage. Records of stage are obtained from a water-stage recorder that is either downloaded electronically in the field to a laptop computer or similar device or is transmitted using telemetry such as GOES satellite, land-line or cellular-phone modems, or by radio transmission. Measurements of discharge are made with a current meter or acoustic Doppler current profiler, using the general methods adopted by the USGS. These methods are described in standard textbooks, USGS Water-Supply Paper 2175, and the Techniques of Water-Resources Investigations of the United States Geological Survey (TWRIs), Book 3, Chapters A1 through A19 and Book 8, Chapters A2 and B2. The methods are consistent with the American Society for Testing and Materials (ASTM) standards and generally follow the standards of the International Organization for Standards (ISO).

For stream-gaging stations, discharge-rating tables for any stage are prepared from stage-discharge curves. If extensions to the rating curves are necessary to express discharge greater than measured, the extensions are made on the basis of indirect measurements of peak discharge (such as slope-area or contracted-opening measurements, or computation of flow over dams and weirs), step-backwater techniques, velocity-area studies, and logarithmic plotting. The daily mean discharge is computed from gage heights and rating tables, then the monthly and yearly mean discharges are computed from the daily values. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features of the stream channel, the daily mean discharge is computed by the shifting-control method in which correction factors based on individual discharge measurements and notes by engineers and observers are used when applying the gage heights to the rating tables. If the stage-discharge relation for a station is temporarily changed by the presence of aquatic growth or debris on the controlling section, the daily mean discharge is computed by the shifting-control method.

The stage-discharge relation at some stream-gaging stations is affected by backwater from reservoirs, tributary streams, or other sources. Such an occurrence necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage at some distance from the base gage.

An index velocity is measured using ultrasonic or acoustic instruments at some stream-gaging stations and this index velocity is used to calculate an average velocity for the flow in the stream. This average velocity along with a stage-area relation is then used to calculate average discharge.

At some stations, stage-discharge relation is affected by changing stage. At these stations, the rate of change in stage is used as a factor in computing discharge.

At some stream-gaging stations in the northern United States, the stage-discharge relation is affected by ice in the winter; therefore, computation of the discharge in the usual manner is impossible. Discharge for periods of ice effect is computed on the basis of gage-height record and occasional winter-discharge measurements. Consideration is given to the available information on temperature and precipitation, notes by gage observers and hydrologists, and comparable records of discharge from other stations in the same or nearby basins.

For a lake or reservoir station, capacity tables giving the volume or contents for any stage are prepared from stage-area relation curves defined by surveys. The application of the stage to the capacity table gives the contents, from which the daily, monthly, or yearly changes are computed.

If the stage-capacity curve is subject to changes because of deposition of sediment in the reservoir, periodic resurveys of the reservoir are necessary to define new stage-capacity curves. During the period between reservoir surveys, the computed contents may be increasingly in error due to the gradual accumulation of sediment.

For some stream-gaging stations, periods of time occur when no gage-height record is obtained or the recorded gage height is faulty and cannot be used to compute daily discharge or contents. Such a situation can happen when the recorder stops or otherwise fails to operate properly, the intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily discharges are estimated on the basis of recorded range in stage, prior and subsequent records, discharge measurements, weather records, and comparison with records from other stations in the same or nearby basins. Likewise, lake or reservoir volumes may be estimated on the basis of operator's log, prior and subsequent records, inflow-outflow studies, and other information.

Data Presentation

The records published for each continuous-record surface-water discharge station (stream-gaging station) consist of five parts: (1) the station manuscript or description; (2) the data table of daily mean values of discharge for the current water year with summary data; (3) a tabular statistical summary of monthly mean flow data for a designated period, by water year; (4) a summary statistics table that includes statistical data of annual, daily, and instantaneous flows as well as data pertaining to annual runoff, 7-day low-flow minimums, and flow duration; and (5) a hydrograph of discharge.

Station Manuscript

The manuscript provides, under various headings, descriptive information, such as station location; period of record; historical extremes outside the period of record; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments follow that clarify information presented under the various headings of the station description.

LOCATION.—Location information is obtained from the most accurate maps available. The location of the gaging station with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages, given for only a few stations, were determined by methods given in "River Mileage Measurement," Bulletin 14, Revision of October 1968, prepared by the Water Resources Council or were provided by the U.S. Army Corps of Engineers.

DRAINAGE AREA.—Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available.

PERIOD OF RECORD.—This term indicates the time period for which records have been published for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not and whose location was such that its flow reasonably can be considered equivalent to flow at the present station.

REVISED RECORDS.—If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error.

GAGE.—The type of gage in current use, the datum of the current gage referred to a standard datum, and a condensed history of the types, locations, and datums of previous gages are given under this heading.

REMARKS.—All periods of estimated daily discharge either will be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily discharge table. (See section titled Identifying Estimated Daily Discharge.) Information is presented relative to the accuracy of the records, to special methods of computation, and to conditions that affect natural flow at the station. In addition, information may be presented pertaining to average discharge data for the period of record; to extremes data for the period of record and the current year; and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, the outlet works and spillway, and the purpose and use of the reservoir.

COOPERATION.—Records provided by a cooperating organization or obtained for the USGS by a cooperating organization are identified here.

EXTREMES OUTSIDE PERIOD OF RECORD.—Information here documents major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the USGS.

REVISIONS.—Records are revised if errors in published records are discovered. Appropriate updates are made in the USGS distributed data system, NWIS, and subsequently to its Web-based National data system, NWISWeb (http://water.usgs.gov/nwis/nwis). Users are encouraged to obtain all required data from NWIS or NWISWeb to ensure that they have the most recent data updates. Updates to NWISWeb are made on an annual basis.

Although rare, occasionally the records of a discontinued gaging station may need revision. Because no current or, possibly, future station manuscript would be published for these stations to document the revision in a REVISED RECORDS entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the District Office (address given on the back of the title page of this report) to determine if the published records were revised after the station was discontinued. If, however, the data for a discontinued station were obtained by computer retrieval, the data would be current. Any published revision of data is always accompanied by revision of the corresponding data in computer storage.

Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the REMARKS and in the inclusion of a stage-capacity table when daily volumes are given.

Peak Discharge Greater than Base Discharge

Tables of peak discharge above base discharge are included for some stations where secondary instantaneous peak discharge data are used in flood-frequency studies of highway and bridge design, flood-control structures, and other flood-related projects. The base discharge value is selected so an average of three peaks a year will be reported. This base discharge value has a recurrence interval of approximately 1.1 years or a 91-percent chance of exceedence in any 1 year.

Data Table of Daily Mean Values

The daily table of discharge records for stream-gaging stations gives mean discharge for each day of the water year. In the monthly summary for the table, the line headed TOTAL gives the sum of the daily figures for each month; the line headed MEAN gives the arithmetic average flow in cubic feet per second for the month; and the lines headed MAX and MIN give the maximum and minimum daily mean discharges, respectively, for each month. Discharge for the month is expressed in cubic feet per second per square mile (line headed CFSM); or in inches (line headed IN); or in acre-feet (line headed AC-FT). Values for cubic feet per second per square mile and runoff in inches or in acre-feet may be omitted if extensive regulation or diversion is in effect or if the drainage area includes large noncontributing areas. At some stations, monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversion data or reservoir volumes are given. These values are identified by a symbol and a corresponding footnote.

Statistics of Monthly Mean Data

A tabular summary of the mean (line headed MEAN), maximum (MAX), and minimum (MIN) of monthly mean flows for each month for a designated period is provided below the mean values table. The water years of the first occurrence of the maximum and minimum monthly flows are provided immediately below those values. The designated period will be expressed as FOR WATER YEARS __-__, BY WATER YEAR (WY), and will list the first and last water years of the range of years selected from the PERIOD OF RECORD paragraph in the station manuscript. The designated period will consist of all of the station record within the specified water years, including complete months of record for partial water years, and may coincide with the period of record for the station. The water years for which the statistics are computed are consecutive, unless a break in the station record is indicated in the manuscript.

Summary Statistics

A table titled SUMMARY STATISTICS follows the statistics of monthly mean data tabulation. This table consists of four columns with the first column containing the line headings of the statistics being

reported. The table provides a statistical summary of yearly, daily, and instantaneous flows, not only for the current water year but also for the previous calendar year and for a designated period, as appropriate. The designated period selected, WATER YEARS __-__, will consist of all of the station records within the specified water years, including complete months of record for partial water years, and may coincide with the period of record for the station. The water years for which the statistics are computed are consecutive, unless a break in the station record is indicated in the manuscript. All of the calculations for the statistical characteristics designated ANNUAL (see line headings below), except for the ANNUAL 7-DAY MINIMUM statistic, are calculated for the designated period using complete water years. The other statistical characteristics may be calculated using partial water years.

The date or water year, as appropriate, of the first occurrence of each statistic reporting extreme values of discharge is provided adjacent to the statistic. Repeated occurrences may be noted in the REMARKS paragraph of the manuscript or in footnotes. Because the designated period may not be the same as the station period of record published in the manuscript, occasionally the dates of occurrence listed for the daily and instantaneous extremes in the designated-period column may not be within the selected water years listed in the heading. When the dates of occurrence do not fall within the selected water years listed in the heading, it will be noted in the REMARKS paragraph or in footnotes. Selected streamflow duration-curve statistics and runoff data also are given. Runoff data may be omitted if extensive regulation or diversion of flow is in effect in the drainage basin.

The following summary statistics data are provided with each continuous record of discharge. Comments that follow clarify information presented under the various line headings of the SUMMARY STATISTICS table.

ANNUAL TOTAL.—The sum of the daily mean values of discharge for the year.

ANNUAL MEAN.—The arithmetic mean for the individual daily mean discharges for the year noted or for the designated period.

HIGHEST ANNUAL MEAN.—The maximum annual mean discharge occurring for the designated period.

LOWEST ANNUAL MEAN.—The minimum annual mean discharge occurring for the designated period.

HIGHEST DAILY MEAN.—The maximum daily mean discharge for the year or for the designated period.

LOWEST DAILY MEAN.—The minimum daily mean discharge for the year or for the designated period.

ANNUAL 7-DAY MINIMUM.—The lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1-March 31). The date shown in the summary statistics table is the initial date of the 7-day period. This value should not be confused with the 7-day 10-year low-flow statistic.

MAXIMUM PEAK FLOW.—The maximum instantaneous peak discharge occurring for the water year or designated period. Occasionally the maximum flow for a year may occur at midnight at the beginning or end of the year, on a recession from or rise toward a higher peak in the adjoining year. In this case, the maximum peak flow is given in the table and the maximum flow may be reported in a footnote or in the REMARKS paragraph in the manuscript.

MAXIMUM PEAK STAGE.—The maximum instantaneous peak stage occurring for the water year or designated period. Occasionally the maximum stage for a year may occur at midnight at the beginning or end of the year, on a recession from or rise toward a higher peak in the adjoining year. In this case, the maximum peak stage is given in the table and the maximum stage may be reported in the REMARKS paragraph in the manuscript or in a footnote. If the dates of occurrence of the maximum peak stage and maximum peak flow are different, the REMARKS paragraph in the manuscript or a footnote may be used to provide further information.

INSTANTANEOUS LOW FLOW.—The minimum instantaneous discharge occurring for the water year or for the designated period.

ANNUAL RUNOFF.—Indicates the total quantity of water in runoff for a drainage area for the year. Data reports may use any of the following units of measurement in presenting annual runoff data:

Acre-foot (AC-FT) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.

Cubic feet per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area.

Inches (INCHES) indicate the depth to which the drainage area would be covered if all of the runoff for a given time period were uniformly distributed on it.

10 PERCENT EXCEEDS.—The discharge that has been exceeded 10 percent of the time for the designated period.

50 PERCENT EXCEEDS.—The discharge that has been exceeded 50 percent of the time for the designated period.

90 PERCENT EXCEEDS.—The discharge that has been exceeded 90 percent of the time for the designated period.

Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first table lists annual maximum stage and discharge at crest-stage stations, and the second table lists discharge measurements at low-flow partial-record stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are often made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for a special reason are called measurements at miscellaneous sites.

Identifying Estimated Daily Discharge

Estimated daily-discharge values published in the water-discharge tables of annual State data reports are identified. This identification is shown either by flagging individual daily values with the letter "e" and noting in a table footnote, "e–Estimated," or by listing the dates of the estimated record in the REMARKS paragraph of the station description.

Accuracy of Field Data and Computed Results

The accuracy of streamflow data depends primarily on (1) the stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements, and (2) the accuracy of observations of stage, measurements of discharge, and interpretations of records.

The degree of accuracy of the records is stated in the REMARKS in the station description. "Excellent" indicates that about 95 percent of the daily discharges are within 5 percent of the true value; "good" within 10 percent; and "fair," within 15 percent. "Poor" indicates that daily discharges have less than "fair" accuracy. Different accuracies may be attributed to different parts of a given record.

Values of daily mean discharge in this report are shown to the nearest hundredth of a cubic foot per second for discharges of less than 1 ft³/s; to the nearest tenths between 1.0 and 10 ft³/s; to whole numbers between 10 and 1,000 ft³/s; and to 3 significant figures above 1,000 ft³/s. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharge values listed for partial-record stations.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, values of cubic feet per second per square mile and of runoff in inches are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Other Data Records Available

Information of a more detailed nature than that published for most of the stream-gaging stations such as discharge measurements, gage-height records, and rating tables is available from the District office. Also, most stream-gaging station records are available in computer-usable form and many statistical analyses have been made.

Information on the availability of unpublished data or statistical analyses may be obtained from the District office (see address that is shown on the back of the title page of this report).

EXPLANATION OF PRECIPITATION RECORDS

Data Collection and Computation

Rainfall data generally are collected using electronic data loggers that measure the rainfall in 0.01-inch increments every 15 minutes using either a tipping-bucket rain gage or a collection well gage. Twenty-four hour rainfall totals are tabulated and presented. A 24-hour period extends from just past midnight of the previous day to midnight of the current day. Snowfall-affected data can result during cold weather when snow fills the rain-gage funnel and then melts as temperatures rise. Snowfall-affected data are subject to errors. Missing values are indicated by this symbol "---" in the table.

Data Presentation

Precipitation records collected at surface-water gaging stations are identified with the same station number and name as the stream-gaging station. Where a surface-water daily-record station is not available, the precipitation record is published with its own name and latitude-longitude identification number.

Information pertinent to the history of a precipitation station is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, period of record, and general remarks.

The following information is provided with each precipitation station. Comments that follow clarify information presented under the various headings of the station description.

LOCATION.—See Data Presentation in the EXPLANATION OF STAGE- AND WATER-DISCHARGE RECORDS section of this report (same comments apply).

PERIOD OF RECORD.—See Data Presentation in the EXPLANATION OF STAGE- AND WATER-DISCHARGE RECORDS section of this report (same comments apply).

INSTRUMENTATION.—Information on the type of rainfall collection system is given.

REMARKS.—Remarks provide added information pertinent to the collection, analysis, or computation of records.

EXPLANATION OF WATER-QUALITY RECORDS

Collection and Examination of Data

Surface-water samples for analysis usually are collected at or near stream-gaging stations. The quality-of-water records are given immediately following the discharge records at these stations.

The descriptive heading for water-quality records gives the period of record for all water-quality data; the period of daily record for parameters that are measured on a daily basis (specific conductance, water temperature, sediment discharge, and so forth); extremes for the current year; and general remarks.

For ground-water records, no descriptive statements are given; however, the well number, depth of well, sampling date, or other pertinent data are given in the table containing the chemical analyses of the ground water.

Water Analysis

Most of the methods used for collecting and analyzing water samples are described in the TWRIs. A list of TWRIs is provided in this report.

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross-section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled at several verticals to obtain a representative sample needed for an accurate mean concentration and for use in calculating load.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory.

For chemical-quality stations equipped with digital monitors, the records consist of daily maximum and minimum values (and sometimes mean or median values) for each constituent measured, and are based on 15-minute or 1-hour intervals of recorded data beginning at 0000 hours and ending at 2400 hours for the day of record.

SURFACE-WATER-QUALITY RECORDS

Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because discharge data is useful in the interpretation of surface-water quality. Records of surface-water quality in this report involve a variety of types of data and measurement frequencies.

Classification of Records

Water-quality data for surface-water sites are grouped into one of three classifications. A *continuous-record station* is a site where data are collected on a regularly scheduled basis. Frequency may be one or more times daily, weekly, monthly, or quarterly. A *partial-record station* is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A *miscellaneous sampling site* is a location other than a continuous- or partial-record station, where samples are collected to give better areal coverage to define water-quality conditions in the river basin.

A careful distinction needs to be made between *continuous records* as used in this report and *continuous recordings* that refer to a continuous graph or a series of discrete values recorded at short intervals. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are obtained only monthly or less frequently. Locations of stations for which records on the quality of surface water appear in this report are shown in figure 1.

Accuracy of the Records

One of four accuracy classifications is applied for measured physical properties at continuous-record stations on a scale ranging from poor to excellent. The accuracy rating is based on data values recorded before any shifts or corrections are made. Additional consideration also is given to the amount of publishable record and to the amount of data that have been corrected or shifted.

Rating classifications for continuous water-quality records

[\$less than or equal to; ±, plus or minus value shown; °C, degree Celsius; >, greater than; %, percent; mg/L, milligram per liter; pH unit, standard pH unit]

Measured physical property	Rating			
	Excellent	Good	Fair	Poor
Water temperature	≤±0.2 ° C	> ±0.2 to 0.5 ° C	> ±0.5 to 0.8 ° C	> ±0.8 ° C
Specific conductance	<u><+</u> 3%	$> \pm 3$ to 10%	$> \pm 10$ to 15%	> ±15%
Dissolved oxygen	≤±0.3 mg/L	$> \pm 0.3$ to 0.5 mg/L	$> \pm 0.5$ to 0.8 mg/L	$> \pm 0.8 \text{ mg/L}$
pН	≤±0.2 unit	$> \pm 0.2$ to 0.5 unit	$> \pm 0.5$ to 0.8 unit	> ±0.8 unit
Turbidity	<u><±</u> 5%	$> \pm 5$ to 10%	> ±10 to 15%	> ±15%

Arrangement of Records

Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites.

On-Site Measurements and Sample Collection

In obtaining water-quality data, a major concern is assuring that the data obtained represent the naturally occurring quality of the water. To ensure this, certain measurements, such as water temperature, pH, and dissolved oxygen, must be made on site when the samples are taken. To assure that measurements made in the laboratory also represent the naturally occurring water, carefully prescribed procedures must be followed in collecting the samples, in treating the samples to prevent changes in quality pending analysis, and in shipping the samples to the laboratory. Procedures for on-site measurements and for collecting, treating, and shipping samples are given in TWRIs Book 1, Chapter D2; Book 3, Chapters A1, A3, and A4; and Book 9, Chapters A1-A9. These TWRIs are listed in this report. Also, detailed information on collecting, treating, and shipping samples can be obtained from the USGS District office (see address that is shown on the back of title page in this report).

Water Temperature

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at the time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges.

At stations where recording instruments are used, either mean temperatures or maximum and minimum temperatures for each day are published. Water temperatures measured at the time of water-discharge measurements are on file in the District office.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross section.

During periods of rapidly changing flow or rapidly changing concentration, samples may be collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily discharges of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples are collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observation, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of suspended-sediment discharge, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included for some stations.

Laboratory Measurements

Samples for biochemical oxygen demand (BOD) and indicator bacteria are analyzed locally. All other samples are analyzed in the USGS laboratory in Lakewood, Colorado, unless otherwise noted. Methods used in analyzing sediment samples and computing sediment records are given in TWRI, Book 5, Chapter C1. Methods used by the USGS laboratories are given in the TWRIs, Book 1, Chapter D2; Book 3, Chapter C2; and Book 5, Chapters A1, A3, and A4. These methods are consistent with ASTM standards and generally follow ISO standards.

Data Presentation

For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radiochemical data, and so forth, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved oxygen, and suspended sediment then follow in sequence.

In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information is

provided with each continuous-record station. Comments that follow clarify information presented under the various headings of the station description.

LOCATION.—See Data Presentation information in the EXPLANATION OF STAGE- AND WATER-DISCHARGE RECORDS section of this report (same comments apply).

DRAINAGE AREA.—See Data Presentation information in the EXPLANATION OF STAGE- AND WATER-DISCHARGE RECORDS section of this report (same comments apply).

PERIOD OF RECORD.—This indicates the time periods for which published water-quality records for the station are available. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually.

INSTRUMENTATION.—Information on instrumentation is given only if a water-quality monitor temperature record, sediment pumping sampler, or other sampling device is in operation at a station.

REMARKS.—Remarks provide added information pertinent to the collection, analysis, or computation of the records.

COOPERATION.—Records provided by a cooperating organization or obtained for the USGS by a cooperating organization are identified here.

EXTREMES.—Maximums and minimums are given only for parameters measured daily or more frequently. For parameters measured weekly or less frequently, true maximums or minimums may not have been obtained. Extremes, when given, are provided for both the period of record and for the current water year.

REVISIONS.—Records are revised if errors in published water-quality records are discovered. Appropriate updates are made in the USGS distributed data system, NWIS, and subsequently to its Webbased National data system, NWISWeb (http://waterdata.usgs.gov/nwis). Users of USGS water-quality data are encouraged to obtain all required data from NWIS or NWISWeb to ensure that they have the most recent updates. Updates to the NWISWeb are made on an annual basis.

The surface-water-quality records for partial-record stations and miscellaneous sampling sites are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence.

Remark Codes

The following remark codes may appear with the water-quality data in this section:

Printed Output	Remark	
E or e	Estimated value.	
>	Actual value is known to be greater than the value shown.	
<	Actual value is known to be less than the value shown.	
K	Results based on colony count outside the acceptance range (non-ideal colony count).	
L	Biological organism count less than 0.5 percent (organism may be observed rather than counted).	
D	Biological organism count equal to or greater than 15 percent (dominant).	
V	Analyte was detected in both the environmental sample and the associated blanks.	
&	Biological organism estimated as dominant.	

Water-Quality Control Data

The USGS National Water Quality Laboratory collects quality-control data on a continuing basis to evaluate selected analytical methods to determine long-term method detection levels (LT-MDLs) and laboratory reporting levels (LRLs). These values are re-evaluated each year on the basis of the most recent quality-control data and, consequently, may change from year to year.

This reporting procedure limits the occurrence of false positive error. Falsely reporting a concentration greater than the LT-MDL for a sample in which the analyte is not present is 1 percent or less. Application of the LRL limits the occurrence of false negative error. The chance of falsely reporting a non-detection for a sample in which the analyte is present at a concentration equal to or greater than the LRL is 1 percent or less.

Accordingly, concentrations are reported as less than LRL for samples in which the analyte was either not detected or did not pass identification. Analytes detected at concentrations between the LT-MDL and the LRL and that pass identification criteria are estimated. Estimated concentrations will be noted with a remark code of "E." These data should be used with the understanding that their uncertainty is greater than that of data reported without the E remark code.

Data generated from quality-control (QC) samples are a requisite for evaluating the quality of the sampling and processing techniques as well as data from the actual samples themselves. Without QC data, environmental sample data cannot be adequately interpreted because the errors associated with the sample data are unknown. The various types of QC samples collected by this District office are described in the following section. Procedures have been established for the storage of water-quality-control data within the USGS. These procedures allow for storage of all derived QC data and are identified so that they can be related to corresponding environmental samples. These data are not presented in this report but are available from the District office.

Blank Samples

Blank samples are collected and analyzed to ensure that environmental samples have not been contaminated in the overall data-collection process. The blank solution used to develop specific types of blank samples is a solution that is free of the analytes of interest. Any measured value signal in a blank sample for an analyte (a specific component measured in a chemical analysis) that was absent in the blank

solution is believed to be due to contamination. Many types of blank samples are possible; each is designed to segregate a different part of the overall data-collection process. The types of blank samples collected in this district are:

Field blank—A blank solution that is subjected to all aspects of sample collection, field processing preservation, transportation, and laboratory handling as an environmental sample.

Trip blank—A blank solution that is put in the same type of bottle used for an environmental sample and kept with the set of sample bottles before and after sample collection.

Equipment blank—A blank solution that is processed through all equipment used for collecting and processing an environmental sample (similar to a field blank but normally done in the more controlled conditions of the office).

Sampler blank—A blank solution that is poured or pumped through the same field sampler used for collecting an environmental sample.

Filter blank—A blank solution that is filtered in the same manner and through the same filter apparatus used for an environmental sample.

Splitter blank—A blank solution that is mixed and separated using a field splitter in the same manner and through the same apparatus used for an environmental sample.

Preservation blank—A blank solution that is treated with the sampler preservatives used for an environmental sample.

Reference Samples

Reference material is a solution or material prepared by a laboratory. The reference material composition is certified for one or more properties so that it can be used to assess a measurement method. Samples of reference material are submitted for analysis to ensure that an analytical method is accurate for the known properties of the reference material. Generally, the selected reference material properties are similar to the environmental sample properties.

Replicate Samples

Replicate samples are a set of environmental samples collected in a manner such that the samples are thought to be essentially identical in composition. Replicate is the general case for which a duplicate is the special case consisting of two samples. Replicate samples are collected and analyzed to establish the amount of variability in the data contributed by some part of the collection and analytical process. Many types of replicate samples are possible, each of which may yield slightly different results in a dynamic hydrologic setting, such as a flowing stream. The types of replicate samples collected in this district are:

Concurrent samples—A type of replicate sample in which the samples are collected simultaneously with two or more samplers or by using one sampler and alternating the collection of samples into two or more compositing containers.

Sequential samples—A type of replicate sample in which the samples are collected one after the other, typically over a short time.

Split sample—A type of replicate sample in which a sample is split into subsamples, each subsample contemporaneous in time and space.

Spike Samples

Spike samples are samples to which known quantities of a solution with one or more well-established analyte concentrations have been added. These samples are analyzed to determine the extent of matrix interference or degradation on the analyte concentration during sample processing and analysis.

ACCESS TO USGS WATER DATA

The USGS provides near real-time stage and discharge data for many of the gaging stations equipped with the necessary telemetry and historic daily-mean and peak-flow discharge data for most current or discontinued gaging stations through the World Wide Web (WWW). These data may be accessed from http://water.usgs.gov.

Water-quality data and ground-water data also are available through the WWW. In addition, data can be provided in various machine-readable formats on various media. Information about the availability of specific types of data or products, and user charges, can be obtained locally from each Water Discipline District Office (See address that is shown on the back of the title page of this report.)

SELECTED REFERENCES

Natural Resources Conservation Service, 2004, State basin outlook reports: Natural Resources Conservation Service, National Water and Climate Center, online version http://www.wcc.nrcs.usda.gov/cgi-bin/bor.pl [Mar. 16, 2004].

Western Regional Climate Center, 2004a, U.S.A. divisional climate data, time series plot #2: National Oceanic and Atmospheric Administration, Western Regional Climate Center, online version http://www.wrcc.dri.edu/spi/divplot2map.html [Mar. 15, 2004].

Western Regional Climate Center, 2004b, 48-month standardized precipitation index through the end of September 2003: National Oceanic and Atmospheric Administration, Western Regional Climate Center, online version http://www.wrcc.dri.edu/spi/images0310/spi48.gif [Mar. 16, 2004].

DEFINITION OF TERMS

Specialized technical terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. Terms such as algae, water level, and precipitation are used in their common everyday meanings, definitions of which are given in standard dictionaries. Not all terms defined in this alphabetical list apply to every State. See also table for conveting English units to International System (SI) Units. Other glossaries that also define water-related terms are accessible from http://water.usgs.gov/glossaries.html.

Acid neutralizing capacity (ANC) is the equivalent sum of all bases or base-producing materials, solutes plus particulates, in an aqueous system that can be titrated with acid to an equivalence point. This term designates titration of an "unfiltered" sample (formerly reported as alkalinity).

Acre-foot (AC-FT, acre-ft) is a unit of volume, commonly used to measure quantities of water used or stored, equivalent to the volume of water required to cover 1 acre to a depth of 1 foot and equivalent to 43,560 cubic feet, 325,851 gallons, or 1,233 cubic meters. (See also "Annual runoff")

Adenosine triphosphate (ATP) is an organic, phosphaterich compound important in the transfer of energy in organisms. Its central role in living cells makes ATP an excellent indicator of the presence of living material in water. A measurement of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter.

Adjusted discharge is discharge data that have been mathematically adjusted (for example, to remove the effects of a daily tide cycle or reservoir storage).

Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample. (See also "Biomass" and "Dry weight")

Alkalinity is the capacity of solutes in an aqueous system to neutralize acid. This term designates titration of a "filtered" sample.

Annual runoff is the total quantity of water that is discharged ("runs off") from a drainage basin in a year. Data reports may present annual runoff data as volumes in acrefeet, as discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches.

Annual 7-day minimum is the lowest mean value for any 7-consecutive-day period in a year. Annual 7-day minimum values are reported herein for the calendar year and the water year (October 1 through September 30). Most low-flow frequency analyses use a climatic year (April 1-March 31), which tends to prevent the low-flow period from being artificially split between adjacent years. The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day, 10-year low-flow statistic.)

Aroclor is the registered trademark for a group of polychlorinated biphenyls that were manufactured by the Monsanto Company prior to 1976. Aroclors are assigned specific 4-digit reference numbers dependent upon molecular type and degree of substitution of the biphenyl ring hydrogen atoms by chlorine atoms. The first two digits of a numbered aroclor represent the molecular type, and the last two digits represent the percentage weight of the hydrogen-substituted chlorine.

Artificial substrate is a device that purposely is placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is collected. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multiplate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection. (See also "Substrate")

Ash mass is the mass or amount of residue present after the residue from a dry-mass determination has been ashed in a muffle furnace at a temperature of 500 °C for 1 hour. Ash mass of zooplankton and phytoplankton is expressed in grams per cubic meter (g/m³), and periphyton and benthic organisms in grams per square meter (g/m²). (See also "Biomass" and "Dry mass")

Aspect is the direction toward which a slope faces with respect to the compass.

Bacteria are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, whereas others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Bankfull stage, as used in this report, is the stage at which a stream first overflows its natural banks formed by floods with 1- to 3-year recurrence intervals.

Base discharge (for peak discharge) is a discharge value, determined for selected stations, above which peak discharge data are published. The base discharge at each

station is selected so that an average of about three peak flows per year will be published. (See also "Peak flow")

Base flow is sustained flow of a stream in the absence of direct runoff. It includes natural and human-induced streamflows. Natural base flow is sustained largely by ground-water discharge.

Bed material is the sediment mixture of which a streambed, lake, pond, reservoir, or estuary bottom is composed. (See also "Bedload" and "Sediment")

Bedload is material in transport that primarily is supported by the streambed. In this report, bedload is considered to consist of particles in transit from the bed to the top of the bedload sampler nozzle (an elevation ranging from 0.25 to 0.5 foot). These particles are retained in the bedload sampler. A sample collected with a pressure-differential bedload sampler also may contain a component of the suspended load.

Bedload discharge (tons per day) is the rate of sediment moving as bedload, reported as dry weight, that passes through a cross section in a given time. NOTE: Bedload discharge values in this report may include a component of the suspended-sediment discharge. A correction may be necessary when computing the total sediment discharge by summing the bedload discharge and the suspended-sediment discharge. (See also "Bedload," "Dry weight," "Sediment," and "Suspended-sediment discharge")

Benthic organisms are the group of organisms inhabiting the bottom of an aquatic environment. They include a number of types of organisms, such as bacteria, fungi, insect larvae and nymphs, snails, clams, and crayfish. They are useful as indicators of water quality.

Biochemical oxygen demand (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria.

Biomass is the amount of living matter present at any given time, expressed as mass per unit area or volume of habitat.

Biomass pigment ratio is an indicator of the total proportion of periphyton that are autotrophic (plants). This also is called the Autotrophic Index.

Blue-green algae (*Cyanophyta*) are a group of phytoplankton and periphyton organisms with a blue pigment in addition to a green pigment called chlorophyll. Blue-green algae can cause nuisance water-quality conditions in lakes and slow-flowing rivers; however, they are found commonly in streams throughout the year. The abundance of blue-green algae in phytoplankton samples is expressed as the number of cells per milliliter (cells/mL) or biovolume

in cubic micrometers per milliliter (μ m³/mL). The abundance of blue-green algae in periphyton samples is given in cells per square centimeter (cells/cm²) or biovolume per square centimeter (μ m³/cm²). (See also "Phytoplankton" and "Periphyton")

Bottom material (See "Bed material")

Bulk electrical conductivity is the combined electrical conductivity of all material within a doughnut-shaped volume surrounding an induction probe. Bulk conductivity is affected by different physical and chemical properties of the material including the dissolved-solids content of the pore water, and the lithology and porosity of the rock.

Canadian Geodetic Vertical Datum 1928 is a geodetic datum derived from a general adjustment of Canada's first order level network in 1928.

Cell volume (biovolume) determination is one of several common methods used to estimate biomass of algae in aquatic systems. Cell members of algae are used frequently in aquatic surveys as an indicator of algal production. However, cell numbers alone cannot represent true biomass because of considerable cell-size variation among the algal species. Cell volume (µm³) is determined by obtaining critical cell measurements or cell dimensions (for example, length, width, height, or radius) for 20 to 50 cells of each important species to obtain an average biovolume per cell. Cells are categorized according to the correspondence of their cellular shape to the nearest geometric solid or combinations of simple solids (for example, spheres, cones, or cylinders). Representative formulae used to compute biovolume are as follows:

sphere $4/3 \pi r^3$ cone $1/3 \pi r^2 h$ cylinder $\pi r^2 h$.

 $pi~(\pi)$ is the ratio of the circumference to the diameter of a circle; pi=3.14159...

From cell volume, total algal biomass expressed as biovolume (μ m³/mL) is thus determined by multiplying the number of cells of a given species by its average cell volume and then summing these volumes for all species.

Cells/volume refers to the number of cells of any organism that is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample volume, and generally are reported as cells or units per milliliter (mL) or liter (L).

Cfs-day (See "Cubic foot per second-day")

Channel bars, as used in this report, are the lowest prominent geomorphic features higher than the channel bed.

Chemical oxygen demand (COD) is a measure of the chemically oxidizable material in the water and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with BOD or with carbonaceous organic pollution from sewage or industrial wastes. [See also "Biochemical oxygen demand (BOD)"]

Clostridium perfringens (C. perfringens) is a spore-forming bacterium that is common in the feces of human and other warmblooded animals. Clostridial spores are being used experimentally as an indicator of past fecal contamination and the presence of microorganisms that are resistant to disinfection and environmental stresses. (See also "Bacteria")

Coliphages are viruses that infect and replicate in coliform bacteria. They are indicative of sewage contamination of water and of the survival and transport of viruses in the environment.

Color unit is produced by 1 milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

Confined aquifer is a term used to describe an aquifer containing water between two relatively impermeable boundaries. The water level in a well tapping a confined aquifer stands above the top of the confined aquifer and can be higher or lower than the water table that may be present in the material above it. In some cases, the water level can rise above the ground surface, yielding a flowing well.

Contents is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

Continuous-record station is a site where data are collected with sufficient frequency to define daily mean values and variations within a day.

Control designates a feature in the channel that physically affects the water-surface elevation and thereby determines the stage-discharge relation at the gage. This feature may be a constriction of the channel, a bedrock outcrop, a gravel bar, an artificial structure, or a uniform cross section over a long reach of the channel.

Control structure, as used in this report, is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of saltwater.

Cubic foot per second (CFS, ft³/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point in 1 second. It is equivalent to approximately 7.48 gallons per second or approximately 449 gallons per minute, or 0.02832 cubic meters per second. The term "second-foot"

sometimes is used synonymously with "cubic foot per second" but is now obsolete.

Cubic foot per second-day (CFS-DAY, Cfs-day, [(ft³/s)/d]) is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, 1.98347 acre-feet, 646,317 gallons, or 2,446.6 cubic meters. The daily mean discharges reported in the daily value data tables numerically are equal to the daily volumes in cfs-days, and the totals also represent volumes in cfs-days.

Cubic foot per second per square mile [CFSM, (ft³/s)/mi²] is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area. (See also "Annual runoff")

Daily mean suspended-sediment concentration is the time-weighted mean concentration of suspended sediment passing a stream cross section during a 24-hour day. (See also "Sediment" and "Suspended-sediment concentration")

Daily record station is a site where data are collected with sufficient frequency to develop a record of one or more data values per day. The frequency of data collection can range from continuous recording to data collection on a daily or near-daily basis.

Data collection platform (DCP) is an electronic instrument that collects, processes, and stores data from various sensors, and transmits the data by satellite data relay, line-of-sight radio, and/or landline telemetry.

Data logger is a microprocessor-based data acquisition system designed specifically to acquire, process, and store data. Data usually are downloaded from onsite data loggers for entry into office data systems.

Datum is a surface or point relative to which measurements of height and/or horizontal position are reported. A vertical datum is a horizontal surface used as the zero point for measurements of gage height, stage, or elevation; a horizontal datum is a reference for positions given in terms of latitude-longitude, State Plane coordinates, or Universal Transverse Mercator (UTM) coordinates. (See also "Gage datum," "Land-surface datum," "National Geodetic Vertical Datum of 1929," and "North American Vertical Datum of 1988")

Diatoms (*Bacillariophyta*) are unicellular or colonial algae with a siliceous cell wall. The abundance of diatoms in phytoplankton samples is expressed as the number of cells per milliliter (cells/mL) or biovolume in cubic micrometers per milliliter (μm³/mL). The abundance of diatoms in periphyton samples is given in cells per square centimeter

(cells/cm²) or biovolume per square centimeter (μm³/cm²). (See also "Phytoplankton" and "Periphyton")

Diel is of or pertaining to a 24-hour period of time; a regular daily cycle.

Discharge, or flow, is the rate that matter passes through a cross section of a stream channel or other water body per unit of time. The term commonly refers to the volume of water (including, unless otherwise stated, any sediment or other constituents suspended or dissolved in the water) that passes a cross section in a stream channel, canal, pipeline, and so forth, within a given period of time (cubic feet per second). Discharge also can apply to the rate at which constituents, such as suspended sediment, bedload, and dissolved or suspended chemicals, pass through a cross section, in which cases the quantity is expressed as the mass of constituent that passes the cross section in a given period of time (tons per day).

Dissolved refers to that material in a representative water sample that passes through a 0.45-micrometer membrane filter. This is a convenient operational definition used by Federal and State agencies that collect water-quality data. Determinations of "dissolved" constituent concentrations are made on sample water that has been filtered.

Dissolved oxygen (DO) is the molecular oxygen (oxygen gas) dissolved in water. The concentration in water is a function of atmospheric pressure, temperature, and dissolved-solids concentration of the water. The ability of water to retain oxygen decreases with increasing temperature or dissolved-solids concentration. Photosynthesis and respiration by plants commonly cause diurnal variations in dissolved-oxygen concentration in water from some streams.

Dissolved solids concentration in water is the quantity of dissolved material in a sample of water. It is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. In the mathematical calculation, the bicarbonate value, in milligrams per liter, is multiplied by 0.4926 to convert it to carbonate. Alternatively, alkalinity concentration (as mg/L CaCO₃) can be converted to carbonate concentration by multiplying by 0.60.

Diversity index (H) (Shannon index) is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is:

$$\bar{d} = -\sum_{i=1}^{s} \frac{n_i}{n} \log_2 \frac{n_i}{n},$$

where n_i is the number of individuals per taxon, n is the total number of individuals, and s is the total number of taxa in the sample of the community. Index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different.

Drainage area of a stream at a specific location is that area upstream from the location, measured in a horizontal plane, that has a common outlet at the site for its surface runoff from precipitation that normally drains by gravity into a stream. Drainage areas given herein include all closed basins, or noncontributing areas, within the area unless otherwise specified.

Drainage basin is a part of the Earth's surface that contains a drainage system with a common outlet for its surface runoff. (See "Drainage area")

Dry mass refers to the mass of residue present after drying in an oven at 105 °C, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry-mass values are expressed in the same units as ash mass. (See also "Ash mass," "Biomass," and "Wet mass")

Dry weight refers to the weight of animal tissue after it has been dried in an oven at 65 °C until a constant weight is achieved. Dry weight represents total organic and inorganic matter in the tissue. (See also "Wet weight")

Embeddedness is the degree to which gravel-sized and larger particles are surrounded or enclosed by finer-sized particles. (See also "Substrate embeddedness class")

Enterococcus bacteria commonly are found in the feces of humans and other warmblooded animals. Although some strains are ubiquitous and not related to fecal pollution, the presence of enterococci in water is an indication of fecal pollution and the possible presence of enteric pathogens. Enterococcus bacteria are those bacteria that produce pink to red colonies with black or reddish-brown precipitate after incubation at 41 °C on mE agar (nutrient medium for bacterial growth) and subsequent transfer to EIA medium. Enterococci include *Streptococcus feacalis, Streptococcus feacium, Streptococcus avium,* and their variants. (See also "Bacteria")

EPT Index is the total number of distinct taxa within the insect orders Ephemeroptera, Plecoptera, and Trichoptera. This index summarizes the taxa richness within the aquatic insects that generally are considered pollution sensitive; the index usually decreases with pollution.

Escherichia coli (E. coli) are bacteria present in the intestine and feces of warmblooded animals. E. coli are a member species of the fecal coliform group of indicator bacteria. In the laboratory, they are defined as those bacteria that produce yellow or yellow-brown colonies on a filter pad saturated with urea substrate broth after primary culturing for 22 to 24 hours at 44.5 °C on mTEC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Estimated (E) value of a concentration is reported when an analyte is detected and all criteria for a positive result are met. If the concentration is less than the method detection limit (MDL), an E code will be reported with the value. If the analyte is identified qualitatively as present, but the quantitative determination is substantially more uncertain, the National Water Quality Laboratory will identify the result with an E code even though the measured value is greater than the MDL. A value reported with an E code should be used with caution. When no analyte is detected in a sample, the default reporting value is the MDL preceded by a less than sign (<). For bacteriological data, concentrations are reported as estimated when results are based on non-ideal colony counts.

Euglenoids (*Euglenophyta*) are a group of algae that usually are free-swimming and rarely creeping. They have the ability to grow either photosynthetically in the light or heterotrophically in the dark. (See also "Phytoplankton")

Extractable organic halides (EOX) are organic compounds that contain halogen atoms such as chlorine. These organic compounds are semivolatile and extractable by ethyl acetate from air-dried streambed sediment. The ethyl acetate extract is combusted, and the concentration is determined by microcoulometric determination of the halides formed. The concentration is reported as micrograms of chlorine per gram of the dry weight of the streambed sediment.

Fecal coliform bacteria are present in the intestines or feces of warmblooded animals. They often are used as indicators of the sanitary quality of the water. In the laboratory, they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.5 °C plus or minus 0.2 °C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Fecal streptococcal bacteria are present in the intestines of warmblooded animals and are ubiquitous in the environment. They are characterized as gram-positive, cocci bacteria that are capable of growth in brain-heart infusion broth. In the laboratory, they are defined as all the organisms that produce red or pink colonies within 48 hours at 35 °C plus or minus 1.0 °C on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentra-

tions are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Fire algae (*Pyrrhophyta*) are free-swimming unicells characterized by a red pigment spot. (See also "Phytoplankton")

Flow-duration percentiles are values on a scale of 100 that indicate the percentage of time for which a flow is not exceeded. For example, the 90th percentile of river flow is greater than or equal to 90 percent of all recorded flow rates.

Gage datum is a horizontal surface used as a zero point for measurement of stage or gage height. This surface usually is located slightly below the lowest point of the stream bottom such that the gage height is usually slightly greater than the maximum depth of water. Because the gage datum is not an actual physical object, the datum is usually defined by specifying the elevations of permanent reference marks such as bridge abutments and survey monuments, and the gage is set to agree with the reference marks. Gage datum is a local datum that is maintained independently of any national geodetic datum. However, if the elevation of the gage datum relative to the national datum (North American Vertical Datum of 1988 or National Geodetic Vertical Datum of 1929) has been determined, then the gage readings can be converted to elevations above the national datum by adding the elevation of the gage datum to the gage reading.

Gage height (G.H.) is the water-surface elevation, in feet above the gage datum. If the water surface is below the gage datum, the gage height is negative. Gage height often is used interchangeably with the more general term "stage," although gage height is more appropriate when used in reference to a reading on a gage.

Gage values are values that are recorded, transmitted, and/or computed from a gaging station. Gage values typically are collected at 5-, 15-, or 30-minute intervals.

Gaging station is a site on a stream, canal, lake, or reservoir where systematic observations of stage, discharge, or other hydrologic data are obtained.

Gas chromatography/flame ionization detector (GC/FID) is a laboratory analytical method used as a screening technique for semivolatile organic compounds that are extractable from water in methylene chloride.

Geomorphic channel units, as used in this report, are fluvial geomorphic descriptors of channel shape and stream velocity. Pools, riffles, and runs are types of geomorphic channel units considered for National Water-Quality Assessment (NAWQA) Program habitat sampling.

Green algae (*Chlorophyta*) are unicellular or colonial algae with chlorophyll pigments similar to those in terrestrial green plants. Some forms of green algae produce mats or floating "moss" in lakes. The abundance of green algae in phytoplankton samples is expressed as the number of cells per milliliter (cells/mL) or biovolume in cubic micrometers per milliliter (μm³/mL). The abundance of green algae in periphyton samples is given in cells per square centimeter (cells/cm²) or biovolume per square centimeter (μm³/cm²). (See also "Phytoplankton" and "Periphyton")

Habitat, as used in this report, includes all nonliving (physical) aspects of the aquatic ecosystem, although living components like aquatic macrophytes and riparian vegetation also are usually included. Measurements of habitat typically are made over a wider geographic scale than are measurements of species distribution.

Habitat quality index is the qualitative description (level 1) of instream habitat and riparian conditions surrounding the reach sampled. Scores range from 0 to 100 percent with higher scores indicative of desirable habitat conditions for aquatic life. Index only applicable to wadable streams.

Hardness of water is a physical-chemical characteristic that commonly is recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations (primarily calcium and magnesium) and is expressed as the equivalent concentration of calcium carbonate (CaCO₃).

High tide is the maximum height reached by each rising tide. The high-high and low-high tides are the higher and lower of the two high tides, respectively, of each tidal day. *See NOAA Web site:*

http://www.co-ops.nos.noaa.gov/tideglos.html

Hilsenhoff's Biotic Index (HBI) is an indicator of organic pollution that uses tolerance values to weight taxa abundances; usually increases with pollution. It is calculated as follows:

$$HBI = sum \frac{(n)(a)}{N} ,$$

where n is the number of individuals of each taxon, a is the tolerance value of each taxon, and N is the total number of organisms in the sample.

Horizontal datum (See "Datum")

Hydrologic index stations referred to in this report are continuous-record gaging stations that have been selected as representative of streamflow patterns for their respective regions. Station locations are shown on index maps.

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as defined by the former Office of Water Data Coordination and delineated on the State Hydrologic Unit Maps by the USGS. Each hydrologic unit is identified by an 8-digit number.

Inch (IN., in.), in reference to streamflow, as used in this report, refers to the depth to which the drainage area would be covered with water if all of the runoff for a given time period were distributed uniformly on it. (See also "Annual runoff")

Instantaneous discharge is the discharge at a particular instant of time. (See also "Discharge")

International Boundary Commission Survey Datum refers to a geodetic datum established at numerous monuments along the United States-Canada boundary by the International Boundary Commission.

Island, as used in this report, is a mid-channel bar that has permanent woody vegetation, is flooded once a year, on average, and remains stable except during large flood events.

Laboratory reporting level (LRL) generally is equal to twice the yearly determined long-term method detection level (LT-MDL). The LRL controls false negative error. The probability of falsely reporting a nondetection for a sample that contained an analyte at a concentration equal to or greater than the LRL is predicted to be less than or equal to 1 percent. The value of the LRL will be reported with a "less than" (<) remark code for samples in which the analyte was not detected. The National Water Quality Laboratory (NWQL) collects quality-control data from selected analytical methods on a continuing basis to determine LT-MDLs and to establish LRLs. These values are reevaluated annually on the basis of the most current quality-control data and, therefore, may change. The LRL replaces the term 'non-detection value' (NDV).

Land-surface datum (lsd) is a datum plane that is approximately at land surface at each ground-water observation well.

Latent heat flux (often used interchangeably with latent heat-flux density) is the amount of heat energy that converts water from liquid to vapor (evaporation) or from vapor to liquid (condensation) across a specified cross-sectional area per unit time. Usually expressed in watts per square meter.

Light-attenuation coefficient, also known as the extinction coefficient, is a measure of water clarity. Light is attenuated according to the Lambert-Beer equation:

$$I = I_o e^{-\lambda L},$$

where I_o is the source light intensity, I is the light intensity at length L (in meters) from the source, λ is the light-attenuation coefficient, and e is the base of the natural logarithm. The light-attenuation coefficient is defined as

$$\lambda = -\frac{1}{L} \log_e \frac{I}{I_o}.$$

Lipid is any one of a family of compounds that are insoluble in water and that make up one of the principal components of living cells. Lipids include fats, oils, waxes, and steroids. Many environmental contaminants such as organochlorine pesticides are lipophilic.

Long-term method detection level (LT-MDL) is a detection level derived by determining the standard deviation of a minimum of 24 method detection limit (MDL) spikesample measurements over an extended period of time. LT-MDL data are collected on a continuous basis to assess year-to-year variations in the LT-MDL. The LT-MDL controls false positive error. The chance of falsely reporting a concentration at or greater than the LT-MDL for a sample that did not contain the analyte is predicted to be less than or equal to 1 percent.

Low tide is the minimum height reached by each falling tide. The high-low and low-low tides are the higher and lower of the two low tides, respectively, of each tidal day. *See NOAA Web site:*

http://www.co-ops.nos.noaa.gov/tideglos.html

Macrophytes are the macroscopic plants in the aquatic environment. The most common macrophytes are the rooted vascular plants that usually are arranged in zones in aquatic ecosystems and restricted in the area by the extent of illumination through the water and sediment deposition along the shoreline.

Mean concentration of suspended sediment (Daily mean suspended-sediment concentration) is the time-weighted concentration of suspended sediment passing a stream cross section during a given time period. (See also "Daily mean suspended-sediment concentration" and "Suspended-sediment concentration")

Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period. (See also "Discharge")

Mean high or **low tide** is the average of all high or low tides, respectively, over a specific period.

Mean sea level is a local tidal datum. It is the arithmetic mean of hourly heights observed over the National Tidal Datum Epoch. Shorter series are specified in the name; for

example, monthly mean sea level and yearly mean sea level. In order that they may be recovered when needed, such datums are referenced to fixed points known as benchmarks. (See also "Datum")

Measuring point (MP) is an arbitrary permanent reference point from which the distance to water surface in a well is measured to obtain water level.

Megahertz is a unit of frequency. One megahertz equals one million cycles per second.

Membrane filter is a thin microporous material of specific pore size used to filter bacteria, algae, and other very small particles from water.

Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult.

Method detection limit (MDL) is the minimum concentration of a substance that can be measured and reported with 99-percent confidence that the analyte concentration is greater than zero. It is determined from the analysis of a sample in a given matrix containing the analyte. At the MDL concentration, the risk of a false positive is predicted to be less than or equal to 1 percent.

Method of Cubatures is a method of computing discharge in tidal estuaries based on the conservation of mass equation

Methylene blue active substances (MBAS) indicate the presence of detergents (anionic surfactants). The determination depends on the formation of a blue color when methylene blue dye reacts with synthetic anionic detergent compounds.

Micrograms per gram (UG/G, μ g/g) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed.

Micrograms per kilogram (UG/KG, μg/kg) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the constituent per unit mass (kilogram) of the material analyzed. One microgram per kilogram is equivalent to 1 part per billion.

Micrograms per liter (UG/L, μg/L) is a unit expressing the concentration of chemical constituents in water as mass (micrograms) of constituent per unit volume (liter) of

water. One thousand micrograms per liter is equivalent to 1 milligram per liter. One microgram per liter is equivalent to 1 part per billion.

Microsiemens per centimeter (US/CM, μ S/cm) is a unit expressing the amount of electrical conductivity of a solution as measured between opposite faces of a centimeter cube of solution at a specified temperature. Siemens is the International System of Units nomenclature. It is synonymous with mhos and is the reciprocal of resistance in ohms.

Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in water as the mass (milligrams) of constituent per unit volume (liter) of water. Concentration of suspended sediment also is expressed in milligrams per liter and is based on the mass of dry sediment per liter of water-sediment mixture.

Minimum reporting level (MRL) is the smallest measured concentration of a constituent that may be reliably reported by using a given analytical method.

Miscellaneous site, miscellaneous station, or miscellaneous sampling site is a site where streamflow, sediment, and/or water-quality data or water-quality or sediment samples are collected once, or more often on a random or discontinuous basis to provide better areal coverage for defining hydrologic and water-quality conditions over a broad area in a river basin.

Most probable number (MPN) is an index of the number of coliform bacteria that, more probably than any other number, would give the results shown by the laboratory examination; it is not an actual enumeration. MPN is determined from the distribution of gas-positive cultures among multiple inoculated tubes.

Multiple-plate samplers are artificial substrates of known surface area used for obtaining benthic invertebrate samples. They consist of a series of spaced, hardboard plates on an eyebolt.

Nanograms per liter (NG/L, ng/L) is a unit expressing the concentration of chemical constituents in solution as mass (nanograms) of solute per unit volume (liter) of water. One million nanograms per liter is equivalent to 1 milligram per liter.

National Geodetic Vertical Datum of 1929 (NGVD 29) is a fixed reference adopted as a standard geodetic datum for elevations determined by leveling. It formerly was called "Sea Level Datum of 1929" or "mean sea level." Although the datum was derived from the mean sea level at 26 tide stations, it does not necessarily represent local mean sea level at any particular place. See NOAA Web site: http://

www.ngs.noaa.gov/faq.shtml#WhatVD29VD88 (See "North American Vertical Datum of 1988")

Natural substrate refers to any naturally occurring immersed or submersed solid surface, such as a rock or tree, upon which an organism lives. (See also "Substrate")

Nekton are the consumers in the aquatic environment and consist of large, free-swimming organisms that are capable of sustained, directed mobility.

Nephelometric turbidity unit (NTU) is the measurement for reporting turbidity that is based on use of a standard suspension of formazin. Turbidity measured in NTU uses nephelometric methods that depend on passing specific light of a specific wavelength through the sample.

North American Datum of 1927 (NAD 27) is the horizontal control datum for the United States that was defined by a location and azimuth on the Clarke spheroid of 1866.

North American Datum of 1983 (NAD 83) is the horizontal control datum for the United States, Canada, Mexico, and Central America that is based on the adjustment of 250,000 points including 600 satellite Doppler stations that constrain the system to a geocentric origin. NAD 83 has been officially adopted as the legal horizontal datum for the United States by the Federal government.

North American Vertical Datum of 1988 (NAVD 88) is a fixed reference adopted as the official civilian vertical datum for elevations determined by Federal surveying and mapping activities in the United States. This datum was established in 1991 by minimum-constraint adjustment of the Canadian, Mexican, and United States first-order terrestrial leveling networks.

Open or **screened interval** is the length of unscreened opening or of well screen through which water enters a well, in feet below land surface.

Organic carbon (OC) is a measure of organic matter present in aqueous solution, suspension, or bottom sediment. May be reported as dissolved organic carbon (DOC), particulate organic carbon (POC), or total organic carbon (TOC).

Organic mass or volatile mass of a living substance is the difference between the dry mass and ash mass and represents the actual mass of the living matter. Organic mass is expressed in the same units as for ash mass and dry mass. (See also "Ash mass," "Biomass," and "Dry mass")

Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meter (m²), acre, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms.

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliter (mL) or liter (L). Numbers of planktonic organisms can be expressed in these terms.

Organochlorine compounds are any chemicals that contain carbon and chlorine. Organochlorine compounds that are important in investigations of water, sediment, and biological quality include certain pesticides and industrial compounds.

Parameter code is a 5-digit number used in the USGS computerized data system, National Water Information System (NWIS), to uniquely identify a specific constituent or property.

Partial-record station is a site where discrete measurements of one or more hydrologic parameters are obtained over a period of time without continuous data being recorded or computed. A common example is a crest-stage gage partial-record station at which only peak stages and flows are recorded.

Particle size is the diameter, in millimeters (mm), of a particle determined by sieve or sedimentation methods. The sedimentation method uses the principle of Stokes Law to calculate sediment particle sizes. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube, sedigraph) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

Particle-size classification, as used in this report, agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

Classification	Size (mm)	Method of analysis
Clay	>0.00024 - 0.004	Sedimentation
Silt	>0.004 - 0.062	Sedimentation
Sand	>0.062 - 2.0	Sedimentation/sieve
Gravel	>2.0 - 64.0	Sieve
Cobble	>64 - 256	Manual measurement
Boulder	>256	Manual measurement

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. For the sedimentation method, most of the organic matter is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native water analysis.

Peak flow (peak stage) is an instantaneous local maximum value in the continuous time series of streamflows or

stages, preceded by a period of increasing values and followed by a period of decreasing values. Several peak values ordinarily occur in a year. The maximum peak value in a year is called the annual peak; peaks lower than the annual peak are called secondary peaks. Occasionally, the annual peak may not be the maximum value for the year; in such cases, the maximum value occurs at midnight at the beginning or end of the year, on the recession from or rise toward a higher peak in the adjoining year. If values are recorded at a discrete series of times, the peak recorded value may be taken as an approximation of the true peak, which may occur between the recording instants. If the values are recorded with finite precision, a sequence of equal recorded values may occur at the peak; in this case, the first value is taken as the peak.

Percent composition or **percent of total** is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, weight, mass, or volume.

Percent shading is a measure of the amount of sunlight potentially reaching the stream. A clinometer is used to measure left and right bank canopy angles. These values are added together, divided by 180, and multiplied by 100 to compute percentage of shade.

Periodic-record station is a site where stage, discharge, sediment, chemical, physical, or other hydrologic measurements are made one or more times during a year but at a frequency insufficient to develop a daily record.

Periphyton is the assemblage of microorganisms attached to and living upon submerged solid surfaces. Although primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms. Periphyton are useful indicators of water quality.

Pesticides are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.

pH of water is the negative logarithm of the hydrogen-ion activity. Solutions with pH less than 7.0 standard units are termed "acidic," and solutions with a pH greater than 7.0 are termed "basic." Solutions with a pH of 7.0 are neutral. The presence and concentration of many dissolved chemical constituents found in water are affected, in part, by the hydrogen-ion activity of water. Biological processes including growth, distribution of organisms, and toxicity of the water to organisms also are affected, in part, by the hydrogen-ion activity of water.

Phytoplankton is the plant part of the plankton. They usually are microscopic, and their movement is subject to the water currents. Phytoplankton growth is dependent upon

solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment and commonly are known as algae. (See also "Plankton")

Picocurie (PC, pCi) is one-trillionth (1 x 10⁻¹²) of the amount of radioactive nuclide represented by a curie (Ci). A curie is the quantity of radioactive nuclide that yields 3.7 x 10¹⁰ radioactive disintegrations per second (dps). A picocurie yields 0.037 dps, or 2.22 dpm (disintegrations per minute).

Plankton is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers. Concentrations are expressed as a number of cells per milliliter (cells/mL) of sample.

Polychlorinated biphenyls (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

Polychlorinated naphthalenes (PCNs) are industrial chemicals that are mixtures of chlorinated naphthalene compounds. They have properties and applications similar to polychlorinated biphenyls (PCBs) and have been identified in commercial PCB preparations.

Pool, as used in this report, is a small part of a stream reach with little velocity, commonly with water deeper than surrounding areas.

Primary productivity is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated (carbon method) by the plants.

Primary productivity (carbon method) is expressed as milligrams of carbon per area per unit time [mg C/(m²/time)] for periphyton and macrophytes or per volume [mg C/(m³/time)] for phytoplankton. The carbon method defines the amount of carbon dioxide consumed as measured by radioactive carbon (carbon-14). The carbon-14 method is of greater sensitivity than the oxygen light- and dark-bottle method and is preferred for use with unenriched water samples. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity")

Primary productivity (oxygen method) is expressed as milligrams of oxygen per area per unit time [mg O/(m²/time)] for periphyton and macrophytes or per volume [mg O/(m³/time)] for phytoplankton. The oxygen method

defines production and respiration rates as estimated from changes in the measured dissolved-oxygen concentration. The oxygen light- and dark-bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity")

Radioisotopes are isotopic forms of elements that exhibit radioactivity. Isotopes are varieties of a chemical element that differ in atomic weight but are very nearly alike in chemical properties. The difference arises because the atoms of the isotopic forms of an element differ in the number of neutrons in the nucleus; for example, ordinary chlorine is a mixture of isotopes having atomic weights of 35 and 37, and the natural mixture has an atomic weight of about 35.453. Many of the elements similarly exist as mixtures of isotopes, and a great many new isotopes have been produced in the operation of nuclear devices such as the cyclotron. There are 275 isotopes of the 81 stable elements, in addition to more than 800 radioactive isotopes.

Reach, as used in this report, is a length of stream that is chosen to represent a uniform set of physical, chemical, and biological conditions within a segment. It is the principal sampling unit for collecting physical, chemical, and biological data.

Recoverable from bed (bottom) material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. (See also "Bed material")

Recurrence interval, also referred to as return period, is the average time, usually expressed in years, between occurrences of hydrologic events of a specified type (such as exceedances of a specified high flow or nonexceedance of a specified low flow). The terms "return period" and "recurrence interval" do not imply regular cyclic occurrence. The actual times between occurrences vary randomly, with most of the times being less than the average and a few being substantially greater than the average. For example, the 100-year flood is the flow rate that is exceeded by the annual maximum peak flow at intervals whose average length is 100 years (that is, once in 100 years, on average); almost two-thirds of all exceedances of the 100-year flood occur less than 100 years after the previous exceedance, half occur less than 70 years after the

previous exceedance, and about one-eighth occur more than 200 years after the previous exceedance. Similarly, the 7-day, 10-year low flow ($7Q_{10}$) is the flow rate below which the annual minimum 7-day-mean flow dips at intervals whose average length is 10 years (that is, once in 10 years, on average); almost two-thirds of the nonexceedances of the $7Q_{10}$ occur less than 10 years after the previous nonexceedance, half occur less than 7 years after, and about one-eighth occur more than 20 years after the previous nonexceedance. The recurrence interval for annual events is the reciprocal of the annual probability of occurrence. Thus, the 100-year flood has a 1-percent chance of being exceeded by the maximum peak flow in any year, and there is a 10-percent chance in any year that the annual minimum 7-day-mean flow will be less than the $7Q_{10}$.

Replicate samples are a group of samples collected in a manner such that the samples are thought to be essentially identical in composition.

Return period (See "Recurrence interval")

Riffle, as used in this report, is a shallow part of the stream where water flows swiftly over completely or partially submerged obstructions to produce surface agitation.

River mileage is the curvilinear distance, in miles, measured upstream from the mouth along the meandering path of a stream channel in accordance with Bulletin No. 14 (October 1968) of the Water Resources Council and typically is used to denote location along a river.

Run, as used in this report, is a relatively shallow part of a stream with moderate velocity and little or no surface turbulence.

Runoff is the quantity of water that is discharged ("runs off") from a drainage basin during a given time period. Runoff data may be presented as volumes in acre-feet, as mean discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches. (See also "Annual runoff")

Sea level, as used in this report, refers to one of the two commonly used national vertical datums (NGVD 1929 or NAVD 1988). See separate entries for definitions of these datums.

Sediment is solid material that originates mostly from disintegrated rocks; when transported by, suspended in, or deposited from water, it is referred to as "fluvial sediment." Sediment includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are affected by environmental and land-use factors. Some major factors are topography, soil

characteristics, land cover, and depth and intensity of precipitation.

Sensible heat flux (often used interchangeably with latent sensible heat-flux density) is the amount of heat energy that moves by turbulent transport through the air across a specified cross-sectional area per unit time and goes to heating (cooling) the air. Usually expressed in watts per square meter.

Seven-day, 10-year low flow $(7Q_{10})$ is the discharge below which the annual 7-day minimum flow falls in 1 year out of 10 on the long-term average. The recurrence interval of the $7Q_{10}$ is 10 years; the chance that the annual 7-day minimum flow will be less than the $7Q_{10}$ is 10 percent in any given year. (See also "Annual 7-day minimum" and "Recurrence interval")

Shelves, as used in this report, are streambank features extending nearly horizontally from the flood plain to the lower limit of persistent woody vegetation.

Sodium adsorption ratio (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Sodium hazard in water is an index that can be used to evaluate the suitability of water for irrigating crops.

Soil heat flux (often used interchangeably with soil heatflux density) is the amount of heat energy that moves by conduction across a specified cross-sectional area of soil per unit time and goes to heating (or cooling) the soil. Usually expressed in watts per square meter.

Soil-water content is the water lost from the soil upon drying to constant mass at 105 °C; expressed either as mass of water per unit mass of dry soil or as the volume of water per unit bulk volume of soil.

Specific electrical conductance (conductivity) is a measure of the capacity of water (or other media) to conduct an electrical current. It is expressed in microsiemens per centimeter at 25 °C. Specific electrical conductance is a function of the types and quantity of dissolved substances in water and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is from 55 to 75 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

Stable isotope ratio (per MIL) is a unit expressing the ratio of the abundance of two radioactive isotopes. Isotope ratios are used in hydrologic studies to determine the age or source of specific water, to evaluate mixing of different

water, as an aid in determining reaction rates, and other chemical or hydrologic processes.

Stage (See "Gage height")

Stage-discharge relation is the relation between the watersurface elevation, termed stage (gage height), and the volume of water flowing in a channel per unit time.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is the physical surface upon which an organism lives.

Substrate embeddedness class is a visual estimate of riffle streambed substrate larger than gravel that is surrounded or covered by fine sediment (<2 mm, sand or finer). Below are the class categories expressed as the percentage covered by fine sediment:

 0
 no gravel or larger substrate
 3
 26-50 percent

 1
 > 75 percent
 4
 5-25 percent

 2
 51-75 percent
 5
 < 5 percent</td>

Surface area of a lake is that area (acres) encompassed by the boundary of the lake as shown on USGS topographic maps, or other available maps or photographs. Because surface area changes with lake stage, surface areas listed in this report represent those determined for the stage at the time the maps or photographs were obtained.

Surficial bed material is the upper surface (0.1 to 0.2 foot) of the bed material that is sampled using U.S. Series Bed-Material Samplers.

Surrogate is an analyte that behaves similarly to a target analyte, but that is highly unlikely to occur in a sample. A surrogate is added to a sample in known amounts before extraction and is measured with the same laboratory procedures used to measure the target analyte. Its purpose is to monitor method performance for an individual sample.

Suspended (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is defined operationally as the material retained on a 0.45-micrometer filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative suspended water-sediment sample that is retained on a

0.45-micrometer membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment, and, thus, the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Determinations of "suspended, recoverable" constituents are made either by directly analyzing the suspended material collected on the filter or, more commonly, by difference, on the basis of determinations of (1) dissolved and (2) total recoverable concentrations of the constituent. (See also "Suspended")

Suspended sediment is the sediment maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid. (See also "Sediment")

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 foot above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L). The analytical technique uses the mass of all of the sediment and the net weight of the water-sediment mixture in a sample to compute the suspended-sediment concentration. (See also "Sediment" and "Suspended sediment")

Suspended-sediment discharge (tons/d) is the rate of sediment transport, as measured by dry mass or volume, that passes a cross section in a given time. It is calculated in units of tons per day as follows: concentration (mg/L) x discharge (ft³/s) x 0.0027. (See also "Sediment," "Suspended sediment," and "Suspended-sediment concentration")

Suspended-sediment load is a general term that refers to a given characteristic of the material in suspension that passes a point during a specified period of time. The term needs to be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It is not synonymous with either suspended-sediment discharge or concentration. (See also "Sediment")

Suspended solids, total residue at 105 °C concentration is the concentration of inorganic and organic material retained on a filter, expressed as milligrams of dry material per liter of water (mg/L). An aliquot of the sample is used for this analysis.

Suspended, total is the total amount of a given constituent in the part of a water-sediment sample that is retained on a

0.45-micrometer membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. Knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total." Determinations of "suspended, total" constituents are made either by directly analyzing portions of the suspended material collected on the filter or, more commonly, by difference, on the basis of determinations of (1) dissolved and (2) total concentrations of the constituent. (See also "Suspended")

Synoptic studies are short-term investigations of specific water-quality conditions during selected seasonal or hydrologic periods to provide improved spatial resolution for critical water-quality conditions. For the period and conditions sampled, they assess the spatial distribution of selected water-quality conditions in relation to causative factors, such as land use and contaminant sources.

Taxa (**Species**) **richness** is the number of species (taxa) present in a defined area or sampling unit.

Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchial scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, *Hexagenia limbata*, is the following:

Kingdom: Animal
Phylum: Arthropeda
Class: Insecta

Order: Ephemeroptera Family: Ephemeridae Genus: *Hexagenia*

Species: Hexagenia limbata

Thalweg is the line formed by connecting points of minimum streambed elevation (deepest part of the channel).

Thermograph is an instrument that continuously records variations of temperature on a chart. The more general term "temperature recorder" is used in the table descriptions and refers to any instrument that records temperature whether on a chart, a tape, or any other medium.

Time-weighted average is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water resulting from the mixing of flow proportionally to the duration of the concentration.

Tons per acre-foot (T/acre-ft) is the dry mass (tons) of a constituent per unit volume (acre-foot) of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136.

Tons per day (T/DAY, tons/d) is a common chemical or sediment discharge unit. It is the quantity of a substance in solution, in suspension, or as bedload that passes a stream section during a 24-hour period. It is equivalent to 2,000 pounds per day, or 0.9072 metric ton per day.

Total is the amount of a given constituent in a representative whole-water (unfiltered) sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determined at least 95 percent of the constituent in the sample.)

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. This group includes coliforms that inhabit the intestine of warmblooded animals and those that inhabit soils. They are characterized as aerobic or facultative anaerobic, gramnegative, nonspore-forming, rod-shaped bacteria that ferment lactose with gas formation within 48 hours at 35 °C. In the laboratory, these bacteria are defined as all the organisms that produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35 °C plus or minus 1.0 °C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 milliliters of sample. (See also "Bacteria")

Total discharge is the quantity of a given constituent, measured as dry mass or volume, that passes a stream cross section per unit of time. When referring to constituents other than water, this term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on.

Total in bottom material is the amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material."

Total length (fish) is the straight-line distance from the anterior point of a fish specimen's snout, with the mouth closed, to the posterior end of the caudal (tail) fin, with the lobes of the caudal fin squeezed together.

Total load refers to all of a constituent in transport. When referring to sediment, it includes suspended load plus bed load.

Total organism count is the number of organisms collected and enumerated in any particular sample. (See also "Organism count/volume")

Total recoverable is the amount of a given constituent in a whole-water sample after a sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data for whole-water samples, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures may produce different analytical results.

Total sediment discharge is the mass of suspendedsediment plus bed-load transport, measured as dry weight, that passes a cross section in a given time. It is a rate and is reported as tons per day. (See also "Bedload," "Bedload discharge," "Sediment," "Suspended sediment," and "Suspended-sediment concentration")

Total sediment load or total load is the sediment in transport as bedload and suspended-sediment load. The term may be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It differs from total sediment discharge in that load refers to the material, whereas discharge refers to the quantity of material, expressed in units of mass per unit time. (See also "Sediment," "Suspended-sediment load," and "Total load")

Transect, as used in this report, is a line across a stream perpendicular to the flow and along which measurements are taken, so that morphological and flow characteristics along the line are described from bank to bank. Unlike a cross section, no attempt is made to determine known elevation points along the line.

Turbidity is the reduction in the transparency of a solution because of the presence of suspended and some dissolved substances. The measurement technique records the collective optical properties of the solution that cause light to be scattered and attenuated rather than transmitted in straight lines; the higher the intensity of scattered or attenuated

light, the higher the value of the turbidity. Turbidity is expressed in nephelometric turbidity units (NTU). Depending on the method used, the turbidity units as NTU can be defined as the intensity of light of a specified wavelength scattered or attenuated by suspended particles or absorbed at a method specified angle, usually 90 degrees, from the path of the incident light. Currently approved methods for the measurement of turbidity in the USGS include those that conform to USEPA Method 180.1, ASTM D1889-00, and ISO 7027. Measurements of turbidity by these different methods and different instruments are unlikely to yield equivalent values.

Ultraviolet (UV) absorbance (absorption) at 254 or 280 nanometers is a measure of the aggregate concentration of the mixture of UV absorbing organic materials dissolved in the analyzed water, such as lignin, tannin, humic substances, and various aromatic compounds. UV absorbance (absorption) at 254 or 280 nanometers is measured in UV absorption units per centimeter of path length of UV light through a sample.

Unconfined aquifer is an aquifer whose upper surface is a water table free to fluctuate under atmospheric pressure. (See "Water-table aquifer")

Vertical datum (See "Datum")

Volatile organic compounds (VOCs) are organic compounds that can be isolated from the water phase of a sample by purging the water sample with inert gas, such as helium, and, subsequently, analyzed by gas chromatography. Many VOCs are human-made chemicals that are used and produced in the manufacture of paints, adhesives, petroleum products, pharmaceuticals, and refrigerants. They often are components of fuels, solvents, hydraulic fluids, paint thinners, and dry-cleaning agents commonly used in urban settings. VOC contamination of drinkingwater supplies is a human-health concern because many are toxic and are known or suspected human carcinogens.

Water table is that surface in a ground-water body at which the water pressure is equal to the atmospheric pressure.

Water-table aquifer is an unconfined aquifer within which the water table is found.

Water year in USGS reports dealing with surface-water supply is the 12-month period October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 2003, is called the "2003 water year."

Watershed (See "Drainage basin")

WDR is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports. (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976.)

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

Wet mass is the mass of living matter plus contained water. (See also "Biomass" and "Dry mass")

Wet weight refers to the weight of animal tissue or other substance including its contained water. (See also "Dry weight")

WSP is used as an acronym for "Water-Supply Paper" in reference to previously published reports.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column and often are large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers. (See also "Plankton")

Techniques of Water-Resources Investigations of the U.S. Geological Survey

The USGS publishes a series of manuals, the Techniques of Water-Resources Investigations, describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, section A of book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises.

Reports in the Techniques of Water-Resources Investigations series, which are listed below, are online at http://water.usgs.gov/pubs/twri/. Printed copies are for sale by the USGS, Information Services, Box 25286, Federal Center, Denver, Colorado 80225 (authorized agent of the Superintendent of Documents, Government Printing Office), telephone 1-888-ASK-USGS. Please telephone 1-888-ASK-USGS for current prices, and refer to the title, book number, chapter number, and mention the "U.S. Geological Survey Techniques of Water-Resources Investigations." Products can then be ordered by telephone, or online at http://www.usgs.gov/sales.html, or by FAX to (303)236-469 of an order form available online at http://mac.usgs.gov/isb/pubs/forms/. Prepayment by major credit card or by a check or money order payable to the "U.S. Geological Survey" is required.

Book 1. Collection of Water Data by Direct Measurement

Section D. Water Quality

1–D1. *Water temperature—Influential factors, field measurement, and data presentation*, by H.H. Stevens, Jr., J.F. Ficke, and G.F. Smoot: USGS–TWRI book 1, chap. D1. 1975. 65 p.

1–D2. *Guidelines for collection and field analysis of ground-water samples for selected unstable constituents*, by W.W. Wood: USGS–TWRI book 1, chap. D2. 1976. 24 p.

Book 2. Collection of Environmental Data

Section D. Surface Geophysical Methods

2–D1. *Application of surface geophysics to ground-water investigations*, by A.A.R. Zohdy, G.P. Eaton, and D.R. Mabey: USGS–TWRI book 2, chap. D1. 1974. 116 p.

2–D2. *Application of seismic-refraction techniques to hydrologic studies*, by F.P. Haeni: USGS–TWRI book 2, chap. D2. 1988. 86 p.

Section E. Subsurface Geophysical Methods

2–E1. *Application of borehole geophysics to water-resources investigations*, by W.S. Keys and L.M. MacCary: USGS–TWRI book 2, chap. E1. 1971. 126 p.

2–E2. *Borehole geophysics applied to ground-water investigations*, by W.S. Keys: USGS–TWRI book 2, chap. E2. 1990. 150 p.

Section F. Drilling and Sampling Methods

2–F1. *Application of drilling, coring, and sampling techniques to test holes and wells*, by Eugene Shuter and W.E. Teasdale: USGS–TWRI book 2, chap. F1. 1989. 97 p.

Book 3. Applications of Hydraulics

Section A. Surface-Water Techniques

- 3–A1. General field and office procedures for indirect discharge measurements, by M.A. Benson and Tate Dalrymple: USGS–TWRI book 3, chap. A1. 1967. 30 p.
- 3–A2. Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M.A. Benson: USGS–TWRI book 3, chap. A2. 1967. 12 p.
- 3–A3. Measurement of peak discharge at culverts by indirect methods, by G.L. Bodhaine: USGS–TWRI book 3, chap. A3. 1968. 60 p.
- 3–A4. *Measurement of peak discharge at width contractions by indirect methods*, by H.F. Matthai: USGS-TWRI book 3, chap. A4. 1967. 44 p.
- 3–A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS–TWRI book 3, chap. A5. 1967. 29 p.
- 3–A6. General procedure for gaging streams, by R.W. Carter and Jacob Davidian: USGS–TWRI book 3, chap. A6. 1968. 13 p.
- 3–A7. Stage measurement at gaging stations, by T.J. Buchanan and W.P. Somers: USGS–TWRI book 3, chap. A7. 1968. 28 p.
- 3–A8. *Discharge measurements at gaging stations*, by T.J. Buchanan and W.P. Somers: USGS–TWRI book 3, chap. A8. 1969. 65 p.
- 3–A9. Measurement of time of travel in streams by dye tracing, by F.A. Kilpatrick and J.F. Wilson, Jr.: USGS–TWRI book 3, chap. A9. 1989. 27 p.
- 3-Al0. Discharge ratings at gaging stations, by E.J. Kennedy: USGS-TWRI book 3, chap. Al0. 1984. 59 p.
- 3–A11. *Measurement of discharge by the moving-boat method*, by G.F. Smoot and C.E. Novak: USGS–TWRI book 3, chap. A11. 1969. 22 p.
- 3–A12. Fluorometric procedures for dye tracing, Revised, by J.F. Wilson, Jr., E.D. Cobb, and F.A. Kilpatrick: USGS–TWRI book 3, chap. A12. 1986. 34 p.
- 3–A13. Computation of continuous records of streamflow, by E.J. Kennedy: USGS–TWRI book 3, chap. A13. 1983. 53 p.
- 3–A14. *Use of flumes in measuring discharge*, by F.A. Kilpatrick and V.R. Schneider: USGS–TWRI book 3, chap. A14. 1983. 46 p.
- 3–A15. Computation of water-surface profiles in open channels, by Jacob Davidian: USGS–TWRI book 3, chap. A15. 1984. 48 p.
- 3–A16. *Measurement of discharge using tracers*, by F.A. Kilpatrick and E.D. Cobb: USGS–TWRI book 3, chap. A16. 1985. 52 p.
- 3-A17. Acoustic velocity meter systems, by Antonius Laenen: USGS-TWRI book 3, chap. A17. 1985. 38 p.
- 3–A18. Determination of stream reaeration coefficients by use of tracers, by F.A. Kilpatrick, R.E. Rathbun, Nobuhiro Yotsukura, G.W. Parker, and L.L. DeLong: USGS–TWRI book 3, chap. A18. 1989. 52 p.
- 3-A19.Levels at streamflow gaging stations, by E.J. Kennedy; USGS-TWRI book 3, chap. A19. 1990. 31 p.
- 3–A20. Simulation of soluble waste transport and buildup in surface waters using tracers, by F.A. Kilpatrick: USGS–TWRI book 3, chap. A20. 1993. 38 p.
- 3-A21Stream-gaging cableways, by C. Russell Wagner: USGS-TWRI book 3, chap. A21. 1995. 56 p.

Section B. Ground-Water Techniques

- 3–B1. *Aquifer-test design, observation, and data analysis,* by R.W. Stallman: USGS–TWRI book 3, chap. B1. 1971. 26 p.
- 3–B2.*Introduction to ground-water hydraulics, a programed text for self-instruction*, by G.D. Bennett: USGS–TWRI book 3, chap. B2. 1976. 172 p.
- 3–B3. *Type curves for selected problems of flow to wells in confined aquifers*, by J.E. Reed: USGS–TWRI book 3, chap. B3. 1980. 106 p.
- 3–B4. *Regression modeling of ground-water flow*, by R.L. Cooley and R.L. Naff: USGS–TWRI book 3, chap. B4. 1990. 232 p.

- 3–B4. Supplement 1. Regression modeling of ground-water flow—Modifications to the computer code for nonlinear regression solution of steady-state ground-water flow problems, by R.L. Cooley: USGS–TWRI book 3, chap. B4. 1993. 8 p.
- 3–B5. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems—An introduction, by O.L. Franke, T.E. Reilly, and G.D. Bennett: USGS–TWRI book 3, chap. B5. 1987. 15 p.
- 3–B6. *The principle of superposition and its application in ground-water hydraulics*, by T.E. Reilly, O.L. Franke, and G.D. Bennett: USGS–TWRI book 3, chap. B6. 1987. 28 p.
- 3–B7. *Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow,* by E.J. Wexler: USGS–TWRI book 3, chap. B7. 1992. 190 p.
- 3–B8. System and boundary conceptualization in ground-water flow simulation, by T.E. Reilly: USGS–TWRI book 3, chap. B8. 2001. 29 p.

Section C. Sedimentation and Erosion Techniques

- 3-C1. Fluvial sediment concepts, by H.P. Guy: USGS-TWRI book 3, chap. C1. 1970. 55 p.
- 3–C2. Field methods for measurement of fluvial sediment, by T.K. Edwards and G.D. Glysson: USGS–TWRI book 3, chap. C2. 1999. 89 p.
- 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS-TWRI book 3, chap. C3. 1972. 66 p.

Book 4. Hydrologic Analysis and Interpretation

Section A. Statistical Analysis

- 4-A1. Some statistical tools in hydrology, by H.C. Riggs: USGS-TWRI book 4, chap. A1. 1968. 39 p.
- 4-A2. Frequency curves, by H.C. Riggs: USGS-TWRI book 4, chap. A2. 1968. 15 p.
- 4–A3. Statistical methods in water resources, by D.R. Helsel and R.M. Hirsch: USGS–TWRI book 4, chap. A3. 1991. Available only online at http://water.usgs.gov/pubs/twri/twri4a3/. (Accessed August 30, 2002.)

Section B. Surface Water

- 4-B1.Low-flow investigations, by H.C. Riggs: USGS-TWRI book 4, chap. B1. 1972. 18 p.
- 4–B2. *Storage analyses for water supply*, by H.C. Riggs and C.H. Hardison: USGS–TWRI book 4, chap. B2. 1973. 20 p.
- 4–B3.*Regional analyses of streamflow characteristics*, by H.C. Riggs: USGS–TWRI book 4, chap. B3. 1973. 15 p.

Section D. Interrelated Phases of the Hydrologic Cycle

4–D1. *Computation of rate and volume of stream depletion by wells*, by C.T. Jenkins: USGS–TWRI book 4, chap. D1. 1970. 17 p.

Book 5. Laboratory Analysis

Section A. Water Analysis

- 5–A1. *Methods for determination of inorganic substances in water and fluvial sediments*, by M.J. Fishman and L.C. Friedman, editors: USGS–TWRI book 5, chap. A1. 1989. 545 p.
- 5–A2. Determination of minor elements in water by emission spectroscopy, by P.R. Barnett and E.C. Mallory, Jr.: USGS–TWRI book 5, chap. A2. 1971. 31 p.
- 5–A3. Methods for the determination of organic substances in water and fluvial sediments, edited by R.L. Wershaw, M.J. Fishman, R.R. Grabbe, and L.E. Lowe: USGS–TWRI book 5, chap. A3. 1987. 80 p.

- 5–A4. *Methods for collection and analysis of aquatic biological and microbiological samples*, by L.J. Britton and P.E. Greeson, editors: USGS–TWRI book 5, chap. A4. 1989. 363 p.
- 5–A5. Methods for determination of radioactive substances in water and fluvial sediments, by L.L. Thatcher, V.J. Janzer, and K.W. Edwards: USGS–TWRI book 5, chap. A5. 1977. 95 p.
- 5–A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sediments, by L.C. Friedman and D.E. Erdmann: USGS–TWRI book 5, chap. A6. 1982. 181 p.

Section C. Sediment Analysis

5-C1. Laboratory theory and methods for sediment analysis, by H.P. Guy: USGS-TWRI book 5, chap. C1. 1969. 58 p.

Book 6. Modeling Techniques

Section A. Ground Water

6–A1.A modular three-dimensional finite-difference ground-water flow model, by M.G. McDonald and A.W. Harbaugh: USGS–TWRI book 6, chap. A1. 1988. 586 p.

6–A2.Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model, by S.A. Leake and D.E. Prudic: USGS–TWRI book 6, chap. A2. 1991. 68 p.

6–A3.A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 1: Model Description and User's Manual, by L.J. Torak: USGS–TWRI book 6, chap. A3. 1993. 136 p.

6–A4.A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 2: Derivation of finite-element equations and comparisons with analytical solutions, by R.L. Cooley: USGS–TWRI book 6, chap. A4. 1992. 108 p.

6–A5.A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 3: Design philosophy and programming details, by L.J. Torak: USGS–TWRI book 6, chap. A5. 1993. 243 p.

6–A6.A coupled surface-water and ground-water flow model (MODBRANCH) for simulation of stream-aquifer interaction, by Eric D. Swain and Eliezer J. Wexler: USGS–TWRI book 6, chap. A6. 1996. 125 p.

6–A7. *User's guide to SEAWAT: A computer program for simulation of three-dimensional variable-density ground-water flow*, by Weixing Guo and Christian D. Langevin: USGS–TWRI book 6, chap. A7. 2002. 77 p.

Book 7. Automated Data Processing and Computations

Section C. Computer Programs

7–C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P.C. Trescott, G.F. Pinder, and S.P. Larson: USGS–TWRI book 7, chap. C1. 1976. 116 p.

7–C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L.F. Konikow and J.D. Bredehoeft: USGS–TWRI book 7, chap. C2. 1978. 90 p.

7–C3. *A model for simulation of flow in singular and interconnected channels*, by R.W. Schaffranek, R.A. Baltzer, and D.E. Goldberg: USGS–TWRI book 7, chap. C3. 1981. 110 p.

Book 8. Instrumentation

Section A. Instruments for Measurement of Water Level

8–A1. Methods of measuring water levels in deep wells, by M.S. Garber and F.C. Koopman: USGS–TWRI book 8, chap. A1. 1968. 23 p.

8–A2.*Installation and service manual for U.S. Geological Survey manometers*, by J.D. Craig: USGS–TWRI book 8, chap. A2. 1983. 57 p.

Section B. Instruments for Measurement of Discharge

8–B2. Calibration and maintenance of vertical-axis type current meters, by G.F. Smoot and C.E. Novak: USGS–TWRI book 8, chap. B2. 1968. 15 p.

Book 9. Handbooks for Water-Resources Investigations

Section A. National Field Manual for the Collection of Water-Quality Data

9–A1. *National field manual for the collection of water-quality data: Preparations for water sampling*, by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A1. 1998. 47 p.

9–A2. *National field manual for the collection of water-quality data: Selection of equipment for water sampling*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A2. 1998. 94 p.

9–A3. *National field manual for the collection of water-quality data: Cleaning of equipment for water sampling*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A3. 1998. 75 p.

9-A4. National field manual for the collection of water-quality data: Collection of water samples, edited by F.D.

Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS-TWRI book 9, chap. A4. 1999. 156 p.

9-A5.National field manual for the collection of water-quality data: Processing of water samples, edited by F.D.

Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS-TWRI book 9, chap. A5. 1999, 149 p.

9–A6.*National field manual for the collection of water-quality data: Field measurements*, edited by F.D. Wilde and D.B. Radtke: USGS–TWRI book 9, chap. A6. 1998. Variously paginated.

9–A7. *National field manual for the collection of water-quality data: Biological indicators*, edited by D.N. Myers and F.D. Wilde: USGS–TWRI book 9, chap. A7. 1997 and 1999. Variously paginated.

 $9-A8. \textit{National field manual for the collection of water-quality data: Bottom-material samples, by D.B. Radtke: USGS-TWRI book 9, chap. A8. 1998. 48 p.$

9–A9. *National field manual for the collection of water-quality data: Safety in field activities*, by S.L. Lane and R.G. Fay: USGS–TWRI book 9, chap. A9. 1998. 60 p.